什么是Agent记忆?
Agent记忆(Agent Memory)是指AI Agent在执行任务过程中存储和管理信息的能力和机制。它类似于人类的记忆系统,使Agent能够记住过去的交互、经验和知识,并在后续任务中利用这些信息做出更好的决策。这种记忆机制对于实现持续学习和处理长期任务至关重要。
什么Agent需要记忆?
从技术角度来看,Agent的记忆本质上是对大模型有限上下文的一种扩展。在Agent的生命周期中,用户或Agent会生成大量数据,而AI大模型能够处理的上下文是有限的,通常为16K到2M tokens。这意味着,仅凭AI自身的上下文处理能力,无法直接处理如此庞大的数据量。
从产品角度看,Agent记忆能够实现个性化交互、保持上下文连贯性,最重要的是有效降低运营成本。
- 个性化交互:例如,用户请求AI推荐一部电影。如果Agent具有记忆,AI可以根据用户的历史兴趣推荐用户喜欢的电影类型,避免重复推荐已看过的电影,并根据用户的偏好推荐更符合其口味的影片。这种个性化体验可以增强用户黏性和满意度,提升使用频率。
- 保持上下文连贯性:自然语言交互的特殊性要求AI能够理解上下文,否则即使在同一个对话中也可能产生歧义或不连贯的回答。例如,用户询问“昨晚的电影怎么样?”如果没有记忆,AI可能无法理解用户指的是哪一部电影。但如果AI具备记忆,它可以回忆起用户最近观看的电影,并准确回应:“昨晚您看的是《复仇者联盟》,整体评分较高,您觉得怎么样?”这样可以保持对话的流畅性和相关性,避免重复询问和误解。
- 降低运营成本:没有记忆的情况下,AI每次对话都需要重新读取历史记录并进行上下文推理,这会增加计算资源的消耗并延长响应时间,影响用户体验。而有记忆后,AI可以直接利用用户的历史信息和偏好来提供服务,避免每次都从头处理所有对话内容。这种方式大大减少了对后端计算的需求,提高了效率,降低了服务器和存储成本,从而有效减少运营成本。
RAG与记忆的区别
严格来说,记忆是RAG(Retrieval-Augmented Generation,检索增强生成)的一个子集,二者都从外部提取信息并融入到LLM(大语言模型)生成的提示中,但它们的应用场景和目标有所不同。核心区别在于:RAG侧重于知识为中心,而记忆侧重于以用户信息为中心。
-
使用场景
-
RAG:用于在大型文档集合(如公司Wiki、技术文档等)中检索信息。
-
记忆:专注于管理用户互动中的个性化信息,尤其是在多用户环境中。
-
信息密度
-
RAG:处理密集的非结构化数据(如文本、表格),主要用于事实检索。
-
记忆:处理用户与Agent之间的多轮会话数据,注重优化交互体验。
-
检索方式
-
RAG:通过语义搜索和嵌入式检索来匹配精确文档。
-
记忆:侧重于总结和压缩互动中的关键信息,优化上下文体验。
常见的Agent记忆机制对比
以下是目前最主流的几种记忆设计机制的对比(图片来公众号坚白Gustavo):
下面是一个具体的例子,帮助大家理解这几种记忆机制的区别:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。