简单推了一下,然后发现没啥必要推导。毕竟花了时间,写下来聊以记录。
四连杆机构简图
本文是交叉的四连杆推导,不交叉的也是一样的,没啥区别。
为方便记录,将记为
,其中,
为驱动角度,在以下推导中是已知量
方法一:利用矢量闭环计算
和
从A出发,两个方向的矢量和同时到达C点:
等式两边的xy分量相等,有:
整理一下有:
可以使用matlab解这个方程组:
% 首先数据初始化
l0 = 5;
l1 = 10;
l2 = 5;
l3 = 10;
syms th2 th3
% 解方程
th1 = pi/3*2;
[th2, th3] = vpasolve(l2*cos(th2)-l3*cos(th3)==-l0-l1*cos(th1),...
l2*sin(th2)-l3*sin(th3)==-l1*sin(th1),th2,th3);
这个式子可以写成矩阵形式,并且可以进一步求导从而得到角速度之间的关系。
方法二:利用连杆长度不变计算
表示出D点和C点后,利用DC连杆的长度不变,可以列出等式
由,可得:
展开,并化简:
等式中,只有是未知的,其他的都是已知的,为方便计算,将已知量做以下定义:
则等式变为:,这里可以用matlab解方程得到结果,或者进一步推一下
以下计算都会涉及多解,因此sin和cos都写出来才能确定解
设:
则有:
根据反三角函数可以计算出: