【保姆级教程|YOLOv8替换检测头】融合改进检测头AFPN4(实测涨点明显)(包成功)(零基础教程)

本篇文章都是基于之前的两篇文章所配置的环境开始,如果是还未跑通YOLOv8的纯小白可以参考我之前的文章先配置跑通YOLOv8。如果已经成功跑通YOLOv8,那就直接参考这篇文章即可。之后博主也会更新更多的相关改进教程和目标分割的一些源码复现,希望大家多多关注!!!

目录

1.AFPN

1.1 AFPN简介

1.2 AFPN在YOLOv8中的改进引用

2.融合改进检测头AFPN4

2.1 AFPN4相应代码

2.2 在YOLOv8中添加AFPN4

2.2.1 添加代码

2.2.2 配置对应yaml文件

 2.2.3  运行代码

3. 总结


1.AFPN

1.1 AFPN简介

AFPN(Adaptive Feature Pyramid Network)是一种改进的特征金字塔网络,旨在优化多尺度特征融合。与传统FPN(自顶向下单向融合)和PANet(双向融合)不同,AFPN通过自适应机制(如动态权重学习、跨尺度交互)实现更灵活的特征融合。其核心思想是让不同层级的特征根据内容自动调整融合权重,减少信息丢失,增强多尺度目标(尤其是小目标)的检测能力。

具体相关内容可以参考原文 AFPN原文链接

1.2 AFPN在YOLOv8中的改进引用

替换原有特征金字塔

YOLOv8默认采用PANet进行特征融合,而AFPN通过以下方式提升性能

动态权重分配:在特征融合时,通过轻量级模块(如SE注意力或可学习参数)为不同层级分配权重,使模型更关注重要特征。

跨尺度高阶交互:引入跨层连接或空洞卷积,增强浅层细节与深层语义的交互,改善小目标检测。

结构适配与轻量化设计

减少计算开销:AFPN采用分组卷积或通道缩减,保持轻量化,避免拖累YOLOv8的实时性

层级优化:在YOLOv8的Neck部分替换为AFPN,保留原有检测头结构,仅调整特征融合路径

2.融合改进检测头AFPN4

2.1 AFPN4相应代码

import math
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules import DFL
from ultralytics.nn.modules.conv import Conv
from ultralytics.utils.tal import dist2bbox, make_anchors

__all__ = ['Detect_AFPN4']  # 定义模块的公开接口

# 定义一个基础的卷积块,包含卷积、批归一化和ReLU激活函数
def BasicConv(filter_in, filter_out, kernel_size, stride=1, pad=None):
    if not pad:
        pad = (kernel_size - 1) // 2 if kernel_size else 0  # 如果没有指定padding,则自动计算
    else:
        pad = pad
    return nn.Sequential(OrderedDict([
        ("conv", nn.Conv2d(filter_in, filter_out, kernel_size=kernel_size, stride=stride, padding=pad, bias=False)),
        ("bn", nn.BatchNorm2d(filter_out)),  # 批归一化
        ("relu", nn.ReLU(inplace=True)),  # ReLU激活函数
    ]))

# 定义一个基础的残差块
class BasicBlock(nn.Module):
    expansion = 1  # 扩展系数,用于控制输出通道数

    def __init__(self, filter_in, filter_out):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(filter_in, filter_out, 3, padding=1)  # 第一个卷积层
        self.bn1 = nn.BatchNorm2d(filter_out, momentum=0.1)  # 批归一化
        self.relu = nn.ReLU(inplace=True)  # ReLU激活函数
        self.conv2 = nn.Conv2d(filter_out, filter_out, 3, padding=1)  # 第二个卷积层
        self.bn2 = nn.BatchNorm2d(filter_out, momentum=0.1)  # 批归一化

    def forward(self, x):
        residual = x  # 保存输入作为残差

        out = self.conv1(x)  # 第一个卷积
        out = self.bn1(out)  # 批归一化
        out = self.relu(out)  # ReLU激活

        out = self.conv2(out)  # 第二个卷积
        out = self.bn2(out)  # 批归一化

        out += residual  # 残差连接
        out = self.relu(out)  # ReLU激活

        return out

# 定义一个上采样模块
class Upsample(nn.Module):
    def __init__(self, in_channels, out_channels, scale_factor=2):
        super(Upsample, self).__init__()
        self.upsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 1),  # 1x1卷积
            nn.Upsample(scale_factor=scale_factor, mode='bilinear')  # 双线性上采样
        )

    def forward(self, x):
        x = self.upsample(x)
        return x

# 定义一个2倍下采样模块
class Downsample_x2(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x2, self).__init__()
        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 2, 2, 0)  # 2x2卷积,步长为2
        )

    def forward(self, x):
        x = self.downsample(x)
        return x

# 定义一个4倍下采样模块
class Downsample_x4(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x4, self).__init__()
        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 4, 4, 0)  # 4x4卷积,步长为4
        )

    def forward(self, x):
        x = self.downsample(x)
        return x

# 定义一个8倍下采样模块
class Downsample_x8(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(Downsample_x8, self).__init__()
        self.downsample = nn.Sequential(
            BasicConv(in_channels, out_channels, 8, 8, 0)  # 8x8卷积,步长为8
        )

    def forward(self, x):
        x = self.downsample(x)
        return x

# 定义一个ASFF(Adaptive Spatial Feature Fusion)模块,用于融合两个特征图
class ASFF_2(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_2, self).__init__()
        self.inter_dim = inter_dim
        compress_c = 8  # 压缩通道数

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)  # 权重计算卷积
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)  # 权重计算卷积

        self.weight_levels = nn.Conv2d(compress_c * 2, 2, kernel_size=1, stride=1, padding=0)  # 权重融合卷积

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)  # 最终卷积

    def forward(self, input1, input2):
        level_1_weight_v = self.weight_level_1(input1)  # 计算第一个输入的特征权重
        level_2_weight_v = self.weight_level_2(input2)  # 计算第二个输入的特征权重

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v), 1)  # 拼接权重
        levels_weight = self.weight_levels(levels_weight_v)  # 融合权重
        levels_weight = F.softmax(levels_weight, dim=1)  # 对权重进行softmax归一化

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :]  # 加权融合特征

        out = self.conv(fused_out_reduced)  # 最终卷积

        return out

# 定义一个ASFF模块,用于融合三个特征图
class ASFF_3(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_3, self).__init__()
        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 3, 3, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input1, input2, input3):
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input1 * levels_weight[:, 0:1, :, :] + \
                            input2 * levels_weight[:, 1:2, :, :] + \
                            input3 * levels_weight[:, 2:, :, :]

        out = self.conv(fused_out_reduced)

        return out

# 定义一个ASFF模块,用于融合四个特征图
class ASFF_4(nn.Module):
    def __init__(self, inter_dim=512):
        super(ASFF_4, self).__init__()
        self.inter_dim = inter_dim
        compress_c = 8

        self.weight_level_0 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_1 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_2 = BasicConv(self.inter_dim, compress_c, 1, 1)
        self.weight_level_3 = BasicConv(self.inter_dim, compress_c, 1, 1)

        self.weight_levels = nn.Conv2d(compress_c * 4, 4, kernel_size=1, stride=1, padding=0)

        self.conv = BasicConv(self.inter_dim, self.inter_dim, 3, 1)

    def forward(self, input0, input1, input2, input3):
        level_0_weight_v = self.weight_level_0(input0)
        level_1_weight_v = self.weight_level_1(input1)
        level_2_weight_v = self.weight_level_2(input2)
        level_3_weight_v = self.weight_level_3(input3)

        levels_weight_v = torch.cat((level_0_weight_v, level_1_weight_v, level_2_weight_v, level_3_weight_v), 1)
        levels_weight = self.weight_levels(levels_weight_v)
        levels_weight = F.softmax(levels_weight, dim=1)

        fused_out_reduced = input0 * levels_weight[:, 0:1, :, :] + \
                            input1 * levels_weight[:, 1:2, :, :] + \
                            input2 * levels_weight[:, 2:3, :, :] + \
                            input3 * levels_weight[:, 3:, :, :]

        out = self.conv(fused_out_reduced)

        return out

# 定义一个包含多个尺度的特征融合模块
class BlockBody(nn.Module):
    def __init__(self, channels=[64, 128, 256, 512]):
        super(BlockBody, self).__init__()
        # 定义多个尺度的卷积块
        self.blocks_scalezero1 = nn.Sequential(
            BasicConv(channels[0], channels[0], 1),
        )
        self.blocks_scaleone1 = nn.Sequential(
            BasicConv(channels[1], channels[1], 1),
        )
        self.blocks_scaletwo1 = nn.Sequential(
            BasicConv(channels[2], channels[2], 1),
        )
        self.blocks_scalethree1 = nn.Sequential(
            BasicConv(channels[3], channels[3], 1),
        )

        # 定义下采样和上采样模块
        self.downsample_scalezero1_2 = Downsample_x2(channels[0], channels[1])
        self.upsample_scaleone1_2 = Upsample(channels[1], channels[0], scale_factor=2)

        # 定义ASFF模块
        self.asff_scalezero1 = ASFF_2(inter_dim=channels[0])
        self.asff_scaleone1 = ASFF_2(inter_dim=channels[1])

        # 定义多个尺度的残差块
        self.blocks_scalezero2 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone2 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )

        # 定义更多的下采样和上采样模块
        self.downsample_scalezero2_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero2_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_scaleone2_2 = Downsample_x2(channels[1], channels[2])
        self.upsample_scaleone2_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.upsample_scaletwo2_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.upsample_scaletwo2_4 = Upsample(channels[2], channels[0], scale_factor=4)

        # 定义更多的ASFF模块
        self.asff_scalezero2 = ASFF_3(inter_dim=channels[0])
        self.asff_scaleone2 = ASFF_3(inter_dim=channels[1])
        self.asff_scaletwo2 = ASFF_3(inter_dim=channels[2])

        # 定义更多的残差块
        self.blocks_scalezero3 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone3 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo3 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )

        # 定义更多的下采样和上采样模块
        self.downsample_scalezero3_2 = Downsample_x2(channels[0], channels[1])
        self.downsample_scalezero3_4 = Downsample_x4(channels[0], channels[2])
        self.downsample_scalezero3_8 = Downsample_x8(channels[0], channels[3])
        self.upsample_scaleone3_2 = Upsample(channels[1], channels[0], scale_factor=2)
        self.downsample_scaleone3_2 = Downsample_x2(channels[1], channels[2])
        self.downsample_scaleone3_4 = Downsample_x4(channels[1], channels[3])
        self.upsample_scaletwo3_4 = Upsample(channels[2], channels[0], scale_factor=4)
        self.upsample_scaletwo3_2 = Upsample(channels[2], channels[1], scale_factor=2)
        self.downsample_scaletwo3_2 = Downsample_x2(channels[2], channels[3])
        self.upsample_scalethree3_8 = Upsample(channels[3], channels[0], scale_factor=8)
        self.upsample_scalethree3_4 = Upsample(channels[3], channels[1], scale_factor=4)
        self.upsample_scalethree3_2 = Upsample(channels[3], channels[2], scale_factor=2)

        # 定义更多的ASFF模块
        self.asff_scalezero3 = ASFF_4(inter_dim=channels[0])
        self.asff_scaleone3 = ASFF_4(inter_dim=channels[1])
        self.asff_scaletwo3 = ASFF_4(inter_dim=channels[2])
        self.asff_scalethree3 = ASFF_4(inter_dim=channels[3])

        # 定义更多的残差块
        self.blocks_scalezero4 = nn.Sequential(
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
            BasicBlock(channels[0], channels[0]),
        )
        self.blocks_scaleone4 = nn.Sequential(
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
            BasicBlock(channels[1], channels[1]),
        )
        self.blocks_scaletwo4 = nn.Sequential(
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
            BasicBlock(channels[2], channels[2]),
        )
        self.blocks_scalethree4 = nn.Sequential(
            BasicBlock(channels[3], channels[3]),
            BasicBlock(channels[3], channels[3]),
            BasicBlock(channels[3], channels[3]),
            BasicBlock(channels[3], channels[3]),
        )

    def forward(self, x):
        x0, x1, x2, x3 = x  # 解包输入特征图

        # 对每个尺度的特征图进行初步处理
        x0 = self.blocks_scalezero1(x0)
        x1 = self.blocks_scaleone1(x1)
        x2 = self.blocks_scaletwo1(x2)
        x3 = self.blocks_scalethree1(x3)

        # 使用ASFF模块进行特征融合
        scalezero = self.asff_scalezero1(x0, self.upsample_scaleone1_2(x1))
        scaleone = self.asff_scaleone1(self.downsample_scalezero1_2(x0), x1)

        # 对融合后的特征图进行进一步处理
        x0 = self.blocks_scalezero2(scalezero)
        x1 = self.blocks_scaleone2(scaleone)

        # 继续使用ASFF模块进行特征融合
        scalezero = self.asff_scalezero2(x0, self.upsample_scaleone2_2(x1), self.upsample_scaletwo2_4(x2))
        scaleone = self.asff_scaleone2(self.downsample_scalezero2_2(x0), x1, self.upsample_scaletwo2_2(x2))
        scaletwo = self.asff_scaletwo2(self.downsample_scalezero2_4(x0), self.downsample_scaleone2_2(x1), x2)

        # 对融合后的特征图进行进一步处理
        x0 = self.blocks_scalezero3(scalezero)
        x1 = self.blocks_scaleone3(scaleone)
        x2 = self.blocks_scaletwo3(scaletwo)

        # 继续使用ASFF模块进行特征融合
        scalezero = self.asff_scalezero3(x0, self.upsample_scaleone3_2(x1), self.upsample_scaletwo3_4(x2),
                                         self.upsample_scalethree3_8(x3))
        scaleone = self.asff_scaleone3(self.downsample_scalezero3_2(x0), x1, self.upsample_scaletwo3_2(x2),
                                       self.upsample_scalethree3_4(x3))
        scaletwo = self.asff_scaletwo3(self.downsample_scalezero3_4(x0), self.downsample_scaleone3_2(x1), x2,
                                       self.upsample_scalethree3_2(x3))
        scalethree = self.asff_scalethree3(self.downsample_scalezero3_8(x0), self.downsample_scaleone3_4(x1),
                                           self.downsample_scaletwo3_2(x2), x3)

        # 对融合后的特征图进行最终处理
        scalezero = self.blocks_scalezero4(scalezero)
        scaleone = self.blocks_scaleone4(scaleone)
        scaletwo = self.blocks_scaletwo4(scaletwo)
        scalethree = self.blocks_scalethree4(scalethree)

        return scalezero, scaleone, scaletwo, scalethree

# 定义一个AFPN(Adaptive Feature Pyramid Network)模块
class AFPN(nn.Module):
    def __init__(self,
                 in_channels=[256, 512, 1024, 2048],
                 out_channels=128):
        super(AFPN, self).__init__()
        self.fp16_enabled = False  # 是否启用FP16

        # 定义多个1x1卷积层,用于调整输入特征图的通道数
        self.conv0 = BasicConv(in_channels[0], in_channels[0] // 8, 1)
        self.conv1 = BasicConv(in_channels[1], in_channels[1] // 8, 1)
        self.conv2 = BasicConv(in_channels[2], in_channels[2] // 8, 1)
        self.conv3 = BasicConv(in_channels[3], in_channels[3] // 8, 1)

        # 定义特征融合的主体模块
        self.body = nn.Sequential(
            BlockBody([in_channels[0] // 8, in_channels[1] // 8, in_channels[2] // 8, in_channels[3] // 8])
        )

        # 定义多个1x1卷积层,用于调整输出特征图的通道数
        self.conv00 = BasicConv(in_channels[0] // 8, out_channels, 1)
        self.conv11 = BasicConv(in_channels[1] // 8, out_channels, 1)
        self.conv22 = BasicConv(in_channels[2] // 8, out_channels, 1)
        self.conv33 = BasicConv(in_channels[3] // 8, out_channels, 1)
        self.conv44 = nn.MaxPool2d(kernel_size=1, stride=2)  # 最大池化层

        # 初始化权重
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.xavier_normal_(m.weight, gain=0.02)  # Xavier初始化
            elif isinstance(m, nn.BatchNorm2d):
                torch.nn.init.normal_(m.weight.data, 1.0, 0.02)  # 正态分布初始化
                torch.nn.init.constant_(m.bias.data, 0.0)  # 偏置初始化为0

    def forward(self, x):
        x0, x1, x2, x3 = x  # 解包输入特征图

        # 对每个尺度的特征图进行通道调整
        x0 = self.conv0(x0)
        x1 = self.conv1(x1)
        x2 = self.conv2(x2)
        x3 = self.conv3(x3)

        # 通过特征融合主体模块
        out0, out1, out2, out3 = self.body([x0, x1, x2, x3])

        # 对每个尺度的输出特征图进行通道调整
        out0 = self.conv00(out0)
        out1 = self.conv11(out1)
        out2 = self.conv22(out2)
        out3 = self.conv33(out3)

        return out0, out1, out2, out3

# 定义一个检测模块,用于目标检测任务
class Detect_AFPN4(nn.Module):
    dynamic = False  # 是否动态调整
    export = False  # 是否用于导出模型
    shape = None  # 输入形状
    anchors = torch.empty(0)  # 锚点
    strides = torch.empty(0)  # 步长

    def __init__(self, nc=80, channel=128, ch=()):
        super().__init__()
        self.nc = nc  # 类别数
        self.nl = len(ch)  # 检测层数
        self.reg_max = 16  # 回归最大值
        self.no = nc + self.reg_max * 4  # 每个锚点的输出数
        self.stride = torch.zeros(self.nl)  # 步长
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # 通道数
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(channel, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)  # 回归分支
        self.cv3 = nn.ModuleList(
            nn.Sequential(Conv(channel, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)  # 分类分支
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()  # 分布焦点损失
        self.AFPN = AFPN(ch)  # AFPN模块

    def forward(self, x):
        x = list(self.AFPN(x))  # 通过AFPN模块
        shape = x[0].shape  # 获取输入形状
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)  # 拼接回归和分类分支
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))  # 生成锚点
            self.shape = shape

        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)  # 拼接所有输出
        if self.export and self.format in ('saved_model', 'pb', 'tflite', 'edgetpu', 'tfjs'):  # 避免TF FlexSplitV操作
            box = x_cat[:, :self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)  # 分离回归和分类输出
        dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides  # 计算边界框

        if self.export and self.format in ('tflite', 'edgetpu'):
            img_h = shape[2] * self.stride[0]
            img_w = shape[3] * self.stride[0]
            img_size = torch.tensor([img_w, img_h, img_w, img_h], device=dbox.device).reshape(1, 4, 1)
            dbox /= img_size

        y = torch.cat((dbox, cls.sigmoid()), 1)  # 拼接边界框和分类结果
        return y if self.export else (y, x)  # 返回结果

    def bias_init(self):
        m = self  # self.model[-1]  # Detect() module
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # 遍历回归和分类分支
            a[-1].bias.data[:] = 1.0  # 初始化回归分支的偏置
            b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # 初始化分类分支的偏置

2.2 在YOLOv8中添加AFPN4

2.2.1 添加代码

首先在ultralytics\nn\modules文件夹中创建一个名为AFPN的python文件,具体位置如下所示

然后将上面的代码部分进行复制后粘贴在AFPN.py文件中,如下所示

然后打开modules文件夹中的__init__.py文件,找到如图所示位置之后,添加以下代码

from .AFPN import Detect_AFPN4

然后还是在该文件当中,找到以下位置,并将名称添加,这个就是在下面的__all__中,在里面按要求添加上即可

然后打开nn文件夹中的task.py文件 

 在该文件中需要修改以下5个地方,大家根据上下文ctrl+f搜索查找到相关位置,有的地方就直接添加上就行,没有的就自己敲一下代码然后添加上

2.2.2 配置对应yaml文件

 依次打开以下文件夹ultralytics\cfg\models\v8

然后在该文件夹中任意复制一个.yaml文件,并粘贴在该文件夹中,将文件名命名为yolov8n-AFPN4。创建完成后将内容全部删除,然后将以下内容粘贴在里面

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
 
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [[2, 4, 6, 9], 1, Detect_AFPN4, [nc, 128]]  # Detect(P3, P4, P5)

将上述代码复制在yaml文件后,复制该yaml文件的绝对路径

 2.2.3  运行代码

 创建一个名为train的python训练脚本,首先新建一个空白的python文件,然后将以下内容复制进去(如果看过我上个博客的就不需要进行这一步了,直接将yaml文件的绝对路径粘贴进去后运行就行)

from ultralytics import YOLO

# Load a model
model = YOLO(r'G:\add\ultralytics-main\ultralytics\cfg\models\v8\yolov8n-AFPN4.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

#model = YOLO(
    #r'G:\add\ultralytics-main\ultralytics\cfg\models\v8\yolov8n-SimAM.yaml')  # build from YAML and transfer weights

# 断点续训
# Load a model
#model = YOLO(r'G:\add\ultralytics-main\runs\detect\train3\weights\last.pt')  # load a partially trained model

''
if __name__ == '__main__':

    results = model.train(data=r'G:\add\ultralytics-main\ultralytics\cfg\datasets\VOC.yaml',batch=75,epochs=1000,imgsz=640,resume=True,workers=8)

大家粘贴完代码之后,记得将yaml的绝对路径和训练集的路径改为自己的路径

全部改好之后大家直接运行这个代码即可,添加成功会出现以下界面

将AFPN4替换进去之后,会显著增加YOLOv8网络的参数量,因此准确率会提高很多,该模块针对高准确率任务很有优势 

3. 总结

博客主要详细教学了在YOLOv8中替换AFPN4的超详细步骤,基本大家只要按步骤来就肯定可以复现成功,后续博主也会再更新一些关于YOLOv8的其他改进方法,期待大家多多关注!!!大家有想看的内容也可以在评论区留言!

### 更换YOLOv8主干网络的操作指南 #### 修改配置文件 为了更换YOLOv8的主干网络,首先需要修改模型配置文件。通常情况下,这些配置保存在一个`.yaml`文件中。对于不同的主干网络,如EfficientViT、SCINet以及FasterNet,对应的配置文件会有所不同。 针对EfficientViT作为新的主干网,在配置文件内指定该架构的具体参数设置[^1]: ```yaml backbone: type: EfficientViT params: ... ``` 而当采用SCINet来增强YOLOv8时,则需调整相应部分以适应新引入组件的需求[^2]: ```yaml backbone: name: 'scinet' pretrained: True/False # 是否使用预训练权重 ... ``` 最后,如果选择的是FasterNet为主干网络的话,那么就要依据官方给出的例子去编辑相应的YAML文档[^3]: ```yaml # yolov8-FasterNet.yaml ... backbone: - [conv, [64, k=7, s=2]] - [maxpool, []] - [faster_net_block, ... ] ... ``` #### 编写Python脚本调用自定义模型 完成上述更改之后,下一步就是通过编写一段简单的Python程序来进行实际测试。这里展示了一个基本框架,它能够加载经过修改后的YOLOv8版本并启动训练过程: ```python from ultralytics import YOLO if __name__ == '__main__': model = YOLO('path_to_custom_backbone_yaml') # 加载预训练权重(可选) model.load('pretrained_weights_path') # 开始训练 model.train( data='dataset_config_file', epochs=num_epochs, batch=batch_size ) ``` 在这个例子中,`'path_to_custom_backbone_yaml'`应该被替换成指向已更新好的配置文件路径;同样地,其他变量也需要按照实际情况设定好合适的值。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值