一、本文介绍
本文聚焦于利用ASFF模块优化 YOLOv8检测头的目标检测网络模型。ASFF模块
通过自适应学习不同尺度特征图的空间融合权重,在训练过程中有效过滤冲突信息,增强特征的尺度不变性。在应用于YOLOv8
时,使得模型能够更合理地利用多尺度特征信息,避免因特征冲突导致的训练效率下降问题,从而提升YOLOv8
在复杂场景下对不同尺度目标的检测精度,增强模型的整体性能与鲁棒性。
专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进