YOLOv8改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF

一、本文介绍

本文聚焦于利用ASFF模块优化 YOLOv8检测头的目标检测网络模型ASFF模块通过自适应学习不同尺度特征图的空间融合权重,在训练过程中有效过滤冲突信息,增强特征的尺度不变性。在应用于YOLOv8时,使得模型能够更合理地利用多尺度特征信息,避免因特征冲突导致的训练效率下降问题,从而提升YOLOv8在复杂场景下对不同尺度目标的检测精度,增强模型的整体性能与鲁棒性。


专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv8改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值