CVPR‘2024 即插即用系列! | StructViT:结构化视觉Transformer

 

Title:Learning Correlation Structures for Vision Transformers

Paper:Learning Correlation Structures for Vision Transformers

Code:Learning Correlation Structures for Vision Transformers (kimmanjin.github.io)

导读

本文提出一种新的注意力机制,称为结构自注意力(StructSA),并提出StructViT:结构视觉Transformer,StructVit可以有效提取图像中的结构化信息,在图像和视频分类任务上性能表现SOTA!

### 改进Transformer模型以支持即插即用功能 为了使Transformer模型具备更好的即插即用特性,在硬件加速方面可以采用FPGA来优化推理过程。FlightLLM项目展示了通过完整的映射流程在FPGAs上高效执行大规模语言模型推断的方法[^1]。 具体而言,改进措施包括: - **模块化设计**:构建可重配置的组件以便于集成到不同的应用环境中。这涉及到定义清晰接口标准使得新旧系统之间能够无缝对接。 - **资源分配优化**:针对特定任务需求调整计算资源配置策略,从而提高性能并降低延迟。例如,在FPGA平台上实施高效的内存管理和数据流控制机制有助于增强实时处理能力。 - **自动化部署工具链**:开发易于使用的软件栈简化从训练完成后的模型转换至目标平台的过程。此类工具应能自动解析架构描述文件,并据此生成适配底层硬件特性的执行代码。 ```python import torch.nn as nn class PlugAndPlayTransformer(nn.Module): def __init__(self, config): super(PlugAndPlayTransformer, self).__init__() # 定义基础结构参数 self.config = config # 实现自注意力层和其他必要组件... def forward(self, input_ids=None, attention_mask=None): outputs = {} # 执行前向传播逻辑... return outputs ``` 上述Python类展示了一个简化的框架用于创建具有即插即用属性的变压器实例。实际应用中还需要考虑更多细节如量化感知训练、剪枝技术等进一步提升效率和兼容性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值