simulink实现ESO(扩张状态观测器)

本文介绍ADRC(自抗扰控制)的核心创新——扩展状态观测器(ESO),对比PID控制,ADRC不仅基于误差,还考虑扰动进行控制。文章详细解析了ADRC的构成模块,包括跟踪微分器(TD)、非线性状态误差反馈(NLSEF)和ESO,并通过Simulink展示了ESO的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ADRC最核心的创新点在于ESO,与PID相比,不仅基于误差控制,还基于扰动进行控制量计算。

1、ADRC的控制框图如下:主要包括跟踪微分器(TD)、非线性状态误差反馈(NLSEF)、扩张状态观测器(ESO)。

2、ESO的公式:

3、用simulink搭建eso,如图所示:

4、将上述eso封装为subsystem,输入输出如下所示:

### 如何在Simulink实现自抗扰控制器(ADRC)扩张状态观测器(ESO) #### 构建仿真环境 建立电机和控制系统的精确数学模型对于有效的仿真至关重要[^1]。这涉及到创建被控对象的状态空间表达形式或其他适用的动态方程。 配置仿真参数,如步长、仿真时间等同样重要,以确保仿真的稳定性和准确性。 #### 自抗扰控制器的设计 自抗扰控制器是一种先进的鲁棒控制策略,其核心在于扩张状态观测器ESO),它能够估计系统内部未测量到的状态以及外部干扰的影响。为了在Simulink环境中构建这样的控制系统: - **定义被控对象**:如同处理PID控制器一样,在Simulink中添加代表被控过程的模块,比如传递函数或状态空间表示法来描述表贴式永磁同步电机的行为特性[^3]。 - **引入ESO模块**:由于MATLAB/Simulink官方库可能不直接提供专门针对ADRC/ESO的标准组件,因此通常需要自行编写S-function或者利用现有的用户贡献文件交换格式(.slx,.mdl)。这些资源可以在MathWorks File Exchange找到相应的实现方案[^4]。 - **连接各部分**:将源模块(例如阶跃信号作为参考输入)、比较环节(求取误差e=r-y)、ESO及其后的非线性反馈律NLSEF(Nonlinear State Error Feedback)依次相连构成完整的闭环结构。 #### 参数设定与调试 当完成基本框架搭建之后,则需依据具体应用场景调整各个组成部分的关键属性值。特别是ESO增益的选择尤为关键,因为它决定了跟踪速度和平滑度之间的平衡;而NLSEF则负责决定最终输出u的形式——即总抗扰量b0f加上补偿项k(e),其中比例系数k影响着响应特性的快速收敛程度。 ```matlab % MATLAB命令窗口示例代码片段用于辅助理解而非实际执行 sys = tf([1],[1 5 6]); % 定义一个简单的二阶系统作为例子 step(sys); % 显示单位阶跃响应曲线帮助直观感受目标性能指标 ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值