(10-2)Actor-Critic算法:Advantage Actor-Critic (A2C)算法

本文详细介绍了AdvantageActor-Critic(A2C)算法,一种结合策略学习和值函数估计的强化学习方法。文章涵盖了A2C的基本思想、优势函数的作用、训练流程以及实战应用,展示了A2C如何通过并行化和优势估计提升学习效率和性能。
摘要由CSDN通过智能技术生成

10.2  Advantage Actor-Critic (A2C)算法

Advantage Actor-Critic (A2C) 是一种强化学习算法,是 Actor-Critic 框架的一种变体。它的目标是通过结合演员(Actor)和评论家(Critic)来学习最优策略,同时提高算法的效率和稳定性。

10.2.1  A2C算法的基本思想

Advantage Actor-Critic(A2C)算法的基本思想是将策略学习和值函数估计结合在一起,通过并行化的方式来提高强化学习的效率。它是Actor-Critic框架的一种实现方式,旨在同时学习策略和值函数,以最大化预期累积奖励。

1. 演员(Actor)

演员负责学习策略,即在给定状态下选择动作的概率分布。演员网络的输出是动作的概率分布,通常使用softmax函数确保输出是有效的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值