10.2 Advantage Actor-Critic (A2C)算法
Advantage Actor-Critic (A2C) 是一种强化学习算法,是 Actor-Critic 框架的一种变体。它的目标是通过结合演员(Actor)和评论家(Critic)来学习最优策略,同时提高算法的效率和稳定性。
10.2.1 A2C算法的基本思想
Advantage Actor-Critic(A2C)算法的基本思想是将策略学习和值函数估计结合在一起,通过并行化的方式来提高强化学习的效率。它是Actor-Critic框架的一种实现方式,旨在同时学习策略和值函数,以最大化预期累积奖励。
1. 演员(Actor)
演员负责学习策略,即在给定状态下选择动作的概率分布。演员网络的输出是动作的概率分布,通常使用softmax函数确保输出是有效的概率。