6.3 Horn-Schunck光流算法
Horn-Schunck光流法类似于Lucas-Kanade方法,也基于亮度一致性假设,但引入了全局平滑性约束,以提高光流场的稳定性。
6.3.1 Horn-Schunck算法介绍
Horn-Schunck是一种经典的全局光流估计算法,由Berthold K.P. Horn和Brian G. Schunck于1981年提出。与Lucas-Kanade算法不同,Horn-Schunck算法通过在整个图像上进行优化,得到全局一致的光流场估计。
Horn-Schunck算法的主要思想是在整个图像上定义一个全局的光流场,并将光流场的平滑性作为约束条件。实现Horn-Schunck算法的基本步骤如下所示。
(1)确定光流场模型:假设整个图像的光流场是一个连续的向量场,即对于图像中的每个像素,都有一个对应的光流向量表示其运动。
(2)定义约束条件:在全局光流场的基础上引入光流场的平滑性约束,即假设光流场在局部区域内是连续的,并且相邻像素的光