(7-2)行为预测算法:基于概率图模型的算法

7.2  基于概率图模型的算法

在行为预测中,常见的任务包括基于过去行为预测未来行为、识别异常行为以及推断潜在的行为模式等。概率图模型提供了一种结构化建模的方法,能够有效地处理这些任务,并提供可解释性和推理能力。

7.2.1  基于概率图模型的常用算法

基于概率图模型的算法包括贝叶斯网络和马尔科夫随机场等。这些算法用于建模随机变量之间的概率关系,并通过概率推断进行预测、分类、聚类等任务。

1. 贝叶斯网络

  1. 贝叶斯网络是一种有向无环图(DAG),用于表示变量之间的条件依赖关系。每个节点代表一个随机变量,每条有向边表示一个变量对另一个变量的影响。
  2. 贝叶斯网络适用于不确定性推理和概率推断,可以用于分类、回归、概率预测等任务。
  3. 在贝叶斯网络中,可以利用贝叶斯定理进行推断,从而计算给定证据下的后验概率分布。

2. 马尔科夫随机场(MRF)

  1. 马尔科夫随机场是一种无向图模型,用于表示变量之间的联合概率分布。节点表示随机变量,边表示变量之间的相关性。
  2. MRF 适用于建模空间上的随机变量,通常用于分割、聚类和标注等任务。
  3. 利用条件随机场(Conditional Random Fields,CRF),可以在给定观察到的数据情况下,对未观察到的变量进行标注。

3. 高斯图模型

  1. 高斯图模型是一种特殊类型的概率图模型,用于建模连续型随机变量之间的关系。它使用高斯分布来表示变量之间的依赖关系。
  2. 高斯图模型可以用于建模数据的联合概率分布,并进行回归、聚类等任务。

上述基于概率图模型的算法提供了一种灵活且强大的建模工具,适用于处理各种类型的数据和问题。它们在机器学习、模式识别、自然语言处理等领域都有广泛的应用。

7.2.2  基于马尔可夫模型的算法

马尔可夫模型是一种基于状态转移概率的模型,可以用于建模车辆和行人在不同状态之间的转移概率,从而进行行为预测。基于马尔可夫模型的算法是一种常用的序列数据建模方法,特别适用于描述状态变化和状态转移的过程。在行为预测中,马尔可夫模型可以用来捕捉行为序列中的状态转移,并基于已观察到的状态序列来预测未来的状态。

马尔可夫模型的基本思想是,当前状态的转移只与前一个状态有关,与更早之前的状态无关,即满足马尔可夫性质。常见的马尔可夫模型包括一阶马尔可夫链和高阶马尔可夫链,具体说明如下:

  1. 一阶马尔可夫链:在一阶马尔可夫链中,当前状态的转移只与前一个状态有关。假设状态空间为{S1, S2, ..., Sn},转移概率矩阵为P,其中P(i, j)表示从状态Si转移到状态Sj的概率。给定一个初始状态,可以利用转移概率矩阵来预测未来的状态序列。
  2. 高阶马尔可夫链:高阶马尔可夫链考虑了当前状态的转移与前面多个状态的组合有关。例如,二阶马尔可夫链考虑了当前状态的转移与前两个状态的组合有关。高阶马尔可夫链能够更好地捕捉序列数据中的长期依赖关系,但也需要更多的数据来估计转移概率。

实现基于马尔可夫模型的行为预测算法的步骤如下所示。

(1)确定状态空间:将行为序列中的观测值映射到一组离散的状态,构建状态空间。

(2)估计转移概率:基于观测到的行为序列,估计状态之间的转移概率,通常使用最大似然估计等方法。

(3)预测未来状态:给定当前的状态序列,利用转移概率矩阵来预测未来的状态。

(4)评估模型:通过比较预测结果与实际观测结果,评估模型的准确性和可靠性。

虽然马尔可夫模型在一些场景下能够提供有效的预测,但它也有一些局限性,例如只考虑当前状态与前一个状态的关系,不能捕捉更复杂的序列依赖关系。因此,在实际应用中,常常需要结合其他方法,如深度学习模型或者考虑更长序列依赖关系的模型,以提高预测的准确性和鲁棒性。

例如下面是一个使用马尔可夫模型的例子,首先创建了一个AutonomousVehicle类和一个Pedestrian类,每个类都有两个状态("Moving"和"Stopped","Crossing"和"Waiting")。我们使用转移矩阵来定义在不同状态之间的转移概率。通过调用move方法,可以模拟状态的变化,并通过get_current_state方法获取当前状态。在循环中,我们模拟了10次状态的转移过程。

实例2-8:使用马尔可夫模型建模车辆和行人在不同状态之间的转移概率codes/2/maer.py

实例文件maer.py的具体实现代码如下所示。

Car1 is Stopped
Pedestrian1 is Crossing
--------------------
Car1 is Stopped
Pedestrian1 is Crossing
--------------------
Car1 is Stopped
Pedestrian1 is Crossing
--------------------
Car1 is Stopped
Pedestrian1 is Crossing
--------------------
Car1 is Stopped
Pedestrian1 is Waiting
--------------------
Car1 is Stopped
Pedestrian1 is Waiting
--------------------
Car1 is Stopped
Pedestrian1 is Waiting
--------------------
Car1 is Stopped
Pedestrian1 is Waiting
--------------------
Car1 is Stopped
Pedestrian1 is Waiting
--------------------
Car1 is Stopped
Pedestrian1 is Crossing
--------------------

上述输出结果表明模型成功地模拟了车辆和行人在不同状态之间的转移过程。每次迭代,车辆可能停止或继续移动,而行人可能等待或横穿道路。

7.2.3  基于贝叶斯网络的行为预测

通过使用贝叶斯网络和条件随机场等概率图模型,可以用于建模车辆、机器人等移动智能体和行人之间的概率关系,从而进行行为预测。基于贝叶斯网络的行为预测是利用贝叶斯网络来建模变量之间的条件依赖关系,并通过推断来预测未来行为的概率分布。下面是实现这一目标的基本步骤。

(1)定义网络结构:首先,需要确定贝叶斯网络的结构,即节点之间的连接方式。每个节点代表一个随机变量,可以是行为、状态或其他相关变量。确定哪些变量对行为具有影响,并建立它们之间的依赖关系。

(2)参数学习:一旦确定了网络结构,就需要从数据中学习节点之间的条件概率分布。这涉及到根据观测数据来估计贝叶斯网络中每个节点的条件概率表(Conditional Probability Tables,CPTs)。

(3)推断:在贝叶斯网络中,推断是指利用贝叶斯定理从给定的证据(观测到的变量)推断出感兴趣的变量的后验概率分布。对于行为预测,我们希望根据观测到的行为和状态来预测未来行为。可以使用推断算法,如变量消去、贝叶斯网络的结构化变量消去、采样等来进行推断。

(4)预测:一旦进行了推断,就可以得到未来行为的后验概率分布。可以根据这些概率分布来进行预测,通常选择概率最高的行为作为预测结果。

(5)模型评估和优化:最后,需要评估模型的性能,并进行必要的调优和优化。可以使用各种指标来评估模型的准确性和可靠性,如对数似然函数、分类准确率等。

请看下面的实例,功能是使用贝叶斯网络(Bayesian Network)来建模车辆速度、行人速度和车辆加速状态之间的概率关系。并通过推断给定证据的情况下,预测智能体的加速状态。

实例2-8:使用贝叶斯网络预测车辆/机器人/飞行器的加速状态codes/2/beiyesi.py

实例文件beiyesi.py的具体实现代码如下所示。

import numpy as np
import pandas as pd
from pgmpy.models import BayesianNetwork
from pgmpy.inference import VariableElimination
# 生成模拟数据
np.random.seed(42)
num_samples = 1000
car_speed = np.random.normal(20, 5, num_samples)
pedestrian_speed = np.random.normal(1.5, 0.5, num_samples)
# 模拟车辆是否加速的状态,1表示加速,0表示未加速
acceleration_state = np.random.choice([0, 1], p=[0.3, 0.7], size=num_samples)
# 创建贝叶斯网络模型
model = BayesianNetwork([('CarSpeed', 'Acceleration'), ('PedestrianSpeed', 'Acceleration')])
# 构建概率分布表
data = pd.DataFrame({'CarSpeed': car_speed, 'PedestrianSpeed': pedestrian_speed, 'Acceleration': acceleration_state})
# 使用 fit 方法将数据拟合到模型中
model.fit(data)
# 进行推断
inference = VariableElimination(model)
predicted_acceleration = inference.map_query(variables=['Acceleration'], evidence={'CarSpeed': int(25), 'PedestrianSpeed': int(1.5)})
print("Predicted Acceleration:", predicted_acceleration['Acceleration'])

上述代码的实现流程如下:

  1. 首先,使用 NumPy 和 Pandas 生成了模拟数据,模拟了车辆和行人的速度以及车辆是否加速的状态。这些数据被组织成一个 Pandas DataFrame。
  2. 然后,使用库pgmpy创建了一个贝叶斯网络模型。在这个模型中,节点表示随机变量,边表示这些变量之间的依赖关系。在这个例子中,模型包括两个节点:车辆速度(CarSpeed)、行人速度(PedestrianSpeed)和一个随车辆和行人速度有关的加速状态节点(Acceleration)。
  3. 接着,使用 fit 方法将模拟数据拟合到贝叶斯网络模型中。拟合的过程包括学习节点之间的概率分布表。
  4. 最后,通过使用变量消除(Variable Elimination)进行推断。在推断过程中,给定了一些观测数据(车辆速度为25,行人速度为1.5),通过模型计算了加速状态的概率分布。具体来说,使用了 map_query 方法来查询加速状态,并提供了观测数据作为证据。
  5. 最终,输出了预测的车辆加速状态,这个状态是在给定观测数据的条件下,通过贝叶斯网络模型计算得出的。执行后会输出:
Predicted Acceleration: 0

上面的输出结果 "Predicted Acceleration: 0" 表明,在给定车辆速度为25和行人速度为1.5的观测数据条件下,贝叶斯网络模型预测车辆未加速,即加速状态为0。这是通过对贝叶斯网络进行推断得出的结果,考虑了车辆速度、行人速度和加速状态之间的概率关系。

我们可以进一步在上面实例的基础上增加车辆和行人行为预测的功能,扩展贝叶斯网络的结构和模型。车辆和行人的行为可能受到多个因素的影响,因此需要考虑更多的节点和依赖关系。请看下面的例子,展示了扩展模型以包括额外的行为节点和相应的依赖关系的过程。

实例2-8扩展贝叶斯网络模型预测车辆和行人的状态codes/2/bei02.py

实例文件bei02.py的具体实现代码如下所示。

import numexpr as ne

# 手动初始化 numexpr
ne.set_num_threads(16)  # 你可以根据需要调整线程数

# 生成模拟数据
np.random.seed(42)
num_samples = 1000

car_speed = np.random.normal(20, 5, num_samples)
pedestrian_speed = np.random.normal(1.5, 0.5, num_samples)

# 模拟车辆是否加速的状态,1表示加速,0表示未加速
acceleration_state = np.random.choice([0, 1], p=[0.3, 0.7], size=num_samples)

# 模拟车辆和行人的行为状态,1表示正常行驶,0表示异常行为
car_behavior = np.random.choice([0, 1], p=[0.2, 0.8], size=num_samples)
pedestrian_behavior = np.random.choice([0, 1], p=[0.3, 0.7], size=num_samples)

# 创建贝叶斯网络模型
model = BayesianNetwork([
    ('CarSpeed', 'Acceleration'),
    ('PedestrianSpeed', 'Acceleration'),
    ('CarSpeed', 'CarBehavior'),
    ('PedestrianSpeed', 'PedestrianBehavior')
])

# 构建概率分布表
data = pd.DataFrame({
    'CarSpeed': car_speed,
    'PedestrianSpeed': pedestrian_speed,
    'Acceleration': acceleration_state,
    'CarBehavior': car_behavior,
    'PedestrianBehavior': pedestrian_behavior
})

# 使用 fit 方法将数据拟合到模型中
model.fit(data)

# 进行推断
inference = VariableElimination(model)
evidence = {'CarSpeed': int(25), 'PedestrianSpeed': int(1.5)}

# 预测车辆加速状态
predicted_acceleration = inference.map_query(variables=['Acceleration'], evidence=evidence)
print("Predicted Acceleration:", predicted_acceleration['Acceleration'])

# 预测车辆行为状态
predicted_car_behavior = inference.map_query(variables=['CarBehavior'], evidence=evidence)
print("Predicted Car Behavior:", predicted_car_behavior['CarBehavior'])

# 预测行人行为状态
predicted_pedestrian_behavior = inference.map_query(variables=['PedestrianBehavior'], evidence=evidence)
print("Predicted Pedestrian Behavior:", predicted_pedestrian_behavior['PedestrianBehavior'])

上述代码的实现流程如下:

  1. 首先使用 NumPy 和 Pandas 生成模拟数据,模拟了车辆和行人的速度、车辆是否加速以及车辆和行人的行为状态。模型包括四个节点:车辆速度(CarSpeed)、行人速度(PedestrianSpeed)、加速状态(Acceleration)、车辆行为状态(CarBehavior)、行人行为状态(PedestrianBehavior)。
  2. 接着,创建了一个贝叶斯网络模型,将这些节点和它们之间的依赖关系定义为有向图。
  3. 然后,使用 fit 方法将模拟数据拟合到贝叶斯网络模型中,学习节点之间的概率分布表。
  4. 进行推断时,给定了一些观测数据,即车辆速度为25,行人速度为1.5。通过模型计算了在这些观测数据下的预测结果。
  5. 最终,输出了预测的车辆加速状态、车辆行为状态以及行人行为状态。在这个例子中,输出结果为车辆未加速、车辆正常行驶、行人正常行为。执行后会输出:
Predicted Acceleration: 0
Predicted Car Behavior: 1
Predicted Pedestrian Behavior: 1

上面的输出结果表明模型对于给定的输入数据进行了三个预测:

  1. 车辆加速状态 (Acceleration):预测为 0,表示未加速。
  2. 车辆行为状态 (Car Behavior):预测为 1,表示正常行驶。
  3. 行人行为状态 (Pedestrian Behavior):预测为 1,表示正常行为。

这些输出结果是基于贝叶斯网络模型对输入数据进行推断得出的。贝叶斯网络可以用于建模变量之间的概率依赖关系,从而进行概率推断。在这个例子中,模型利用车辆速度、行人速度以及它们的行为状态来预测车辆的加速状态和车辆、行人的行为状态。

  • 19
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值