(15-1)基于模型的强化学习:Model-based RL基础

本文介绍了基于模型的强化学习,强调了其核心思想——构建环境模型以指导决策。文章详细探讨了模型的构成(状态转移模型和奖励模型),算法(如MPC、MCTS、MBPO和PlaNet),以及在机器人控制、自动驾驶等领域的重要应用。
摘要由CSDN通过智能技术生成

基于模型的强化学习(Model-based Reinforcement Learning)是强化学习的一个分支,其核心思想是代理(agent)试图构建和使用一个模型来描述环境(environment)的动态特性,然后利用这个模型来制定和优化决策策略,以最大化累积奖励。在本章的内容中,将详细讲解基于模型的强化学习的知识,为读者步入后面知识的学习打下基础。

15.1  Model-based RL基础

基于模型的强化学习(Model-based RL)是一类强化学习方法,代理尝试学习环境的模型,然后利用这个模型来做出决策和优化策略。

15.1.1  基于模型的强化学习简介

基于模型的强化学习(Model-based Reinforcement Learning)是强化学习的一个分支,其核心思想是代理(agent)试图构建和使用一个模型来描述环境(environment)的动态特性,然后利用这个模型来制定和优化决策策略,以最大化累积奖励。

  1. 环境模型:在基于模型的强化学习中,代理首先尝试学习环境的模型。这个模型通常包括两个部分:状态转移模型(Transition Model)和奖励模型(Reward Model)。
  2. 状态转移模型:它描述了在给定当前状态和采取某个动作的情况下,代理将以什么概率转移到下一个状态。这可以是一个确定性模型或概率性模型。
  3. 奖励模型:奖励模型用于预测代理在特定状态下采取特定动作所获得的奖励。
  4. 规划与决策:一旦代理拥有了环境模型,它可以使用这个模型来进行规划和决策。代理可以采用各种规划算法,如动态规划、蒙特卡洛树搜索(MCTS)、或模型预测控制(MPC),来评估不同策略的预期性能,并选择最优的策略以达到最大化累积奖励的目标。
  5. 策略改进:基于模型的强化学习方法通常会使用规划结果来改进其策略,使其在真实环境中能够更好地选择动作。这可以涉及到探索与利用的权衡,以确保代理持续改进其性能。
  6. 执行动作:代理根据制定的策略和决策,执行动作并与真实环境进行交互。它观察环境的反馈,包括奖励信号和新的状态。
  7. 模型更新:在代理与真实环境交互时,它可以使用这些真实的经验数据来不断更新环境模型,以提高模型的准确性和可用性。

基于模型的强化学习通常被用于需要高效利用有限交互数据或者需要规划复杂策略的应用领域,如机器人控制、自动驾驶、和资源管理等。尽管需要建模工作,但它可以在某些情况下在数据效率和性能上具有优势。

15.1.2  模型在强化学习中的作用

在基于模型的强化学习中,模型的作用非常关键,它主要用于建模和模拟环境,以帮助代理(agent)做出更好的决策和优化策略。模型在基于模型的强化学习中的主要作用如下:

  1. 环境仿真:模型用于模拟代理与环境之间的交互。通过模型,代理可以在模拟环境中执行动作,观察模拟结果,而无需在真实环境中进行实际的试验。这有助于减少真实交互的需求,从而降低了成本和风险。
  2. 规划与策略优化:模型可以用来进行规划,代理可以利用模型来模拟未来的状态转移和奖励情况。基于这些模拟结果,代理可以使用不同的规划算法来评估各种可能的策略,并选择最优策略以最大化累积奖励。这使得代理能够更有效地探索和利用环境。
  3. 探索与利用的平衡:模型可以用来辅助代理在探索和利用之间找到平衡。代理可以使用模型来模拟探索动作的结果,以预测不同探索策略的潜在影响。这有助于代理做出更明智的探索决策,以便更好地了解环境。
  4. 数据效率:基于模型的强化学习方法通常更加数据效率,因为代理可以使用模拟的交互数据进行学习和策略改进。这对于那些在真实环境中数据采集成本高昂或风险较大的任务非常有用。
  5. 模型改进:代理可以不断地利用实际环境中的反馈来改进其模型。通过比较模型的预测与实际观测,代理可以更新模型,提高其准确性和泛化能力。

总之,模型在基于模型的强化学习中充当了一个关键角色,帮助代理在决策和交互中更好地理解和利用环境。这种方法通常用于处理复杂的环境和资源有限的情况下,以提高学习的效率和性能。

15.1.3  模型的种类与构建方法

在基于模型的强化学习中,模型是代理用来模拟环境的关键组成部分。这个模型通常包括两个方面:状态转移模型和奖励模型。下面是一些常见的模型类型和构建方法:

1. 状态转移模型

  1. 确定性模型:这种模型假定在给定状态和动作的情况下,下一个状态是确定的。它可以表示为一个函数:$s_{t+1} = f(s_t, a_t)$,其中 $s_{t+1}$ 是下一个状态,$s_t$ 是当前状态,$a_t$ 是当前动作。确定性模型通常用于简化问题,但在某些情况下可能不够准确。
  2. 概率性模型:这种模型允许在给定状态和动作的情况下,存在不同的可能下一个状态,并为每个可能状态分配概率。通常,概率性模型可以表示为条件概率分布:$P(s_{t+1} | s_t, a_t)$。概率性模型更适用于不确定性较高的环境。
  3. 神经网络模型:使用神经网络来建模状态转移函数是一种常见的方法。代理通过学习从状态和动作到下一个状态的映射,可以使用深度学习技术来逼近这个映射。

2. 奖励模型

  1. 确定性奖励模型:这种模型假定在给定状态和动作的情况下,奖励是确定的。它可以表示为函数:$r_t = R(s_t, a_t)$,其中 $r_t$ 是奖励,$s_t$ 是当前状态,$a_t$ 是当前动作。
  2. 概率性奖励模型:与状态转移模型类似,奖励也可以具有不确定性,并表示为概率分布。
  3. 神经网络奖励模型:使用神经网络来建模奖励函数也是一种常见的方法。代理可以通过学习从状态和动作到奖励的映射来逼近奖励函数。

3. 构建方法

  1. 数据收集:代理可以通过与环境的实际交互来收集数据,然后使用这些数据来构建环境模型。这通常需要大量的探索,特别是在复杂环境中。
  2. 模型学习:代理可以使用已收集的数据来训练状态转移模型和奖励模型。这可以使用各种机器学习技术,如监督学习、逆强化学习或模型预测控制(MPC)来完成。
  3. 模型更新:代理可以在与真实环境的交互中不断更新模型,以提高模型的准确性。这可以通过使用增量学习或在线学习方法来实现。

总之,基于模型的强化学习涉及构建和使用模型来模拟环境,这些模型可以是确定性或概率性的,可以使用各种方法来构建,包括数据收集、模型学习和模型更新。选择适当的模型类型和构建方法通常取决于具体的问题和环境特性。

15.1.4  基于模型的强化学习算法

基于模型的强化学习算法有多种,它们在模型的类型、使用方式和具体应用上有所不同。以下是一些常见的基于模型的强化学习算法:

  1. 模型预测控制(Model Predictive Control,MPC):MPC是一种模型-based强化学习算法,它在每个时间步骤上使用环境模型来优化未来的一系列动作,然后执行第一个动作。这个过程不断迭代,以实现目标。
  2. 蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS):MCTS是一种规划算法,常用于树搜索问题,如围棋和棋类游戏。它使用环境模型来模拟大量的游戏轨迹,以找到最优的动作序列。
  3. MBPO(Model-Based Policy Optimization):MBPO是一种基于模型的强化学习算法,它结合了模型学习和策略优化。MBPO的主要思想是使用环境模型来规划和优化策略,以最大化累积奖励。它通过预测模型的不确定性来帮助代理在探索和利用之间取得平衡,以提高数据效率和性能。
  4. PlaNet:PlaNet是一种模型-based强化学习算法,其特点是使用不确定性感知的随机深度神经网络来建模环境动态。PlaNet的目标是在模型中进行高质量的规划,以改进代理的策略。它也被设计为能够处理像视频这样的高维输入。
  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值