(15-1)基于模型的强化学习:Model-based RL基础

本文介绍了基于模型的强化学习,强调了其核心思想——构建环境模型以指导决策。文章详细探讨了模型的构成(状态转移模型和奖励模型),算法(如MPC、MCTS、MBPO和PlaNet),以及在机器人控制、自动驾驶等领域的重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于模型的强化学习(Model-based Reinforcement Learning)是强化学习的一个分支,其核心思想是代理(agent)试图构建和使用一个模型来描述环境(environment)的动态特性,然后利用这个模型来制定和优化决策策略,以最大化累积奖励。在本章的内容中,将详细讲解基于模型的强化学习的知识,为读者步入后面知识的学习打下基础。

15.1  Model-based RL基础

基于模型的强化学习(Model-based RL)是一类强化学习方法,代理尝试学习环境的模型,然后利用这个模型来做出决策和优化策略。

15.1.1  基于模型的强化学习简介

基于模型的强化学习(Model-based Reinforcement Learning)是强化学习的一个分支,其核心思想是代理(agent)试图构建和使用一个模型来描述环境(environment)的动态特性,然后利用这个模型来制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值