基于模型的强化学习(Model-based Reinforcement Learning)是强化学习的一个分支,其核心思想是代理(agent)试图构建和使用一个模型来描述环境(environment)的动态特性,然后利用这个模型来制定和优化决策策略,以最大化累积奖励。在本章的内容中,将详细讲解基于模型的强化学习的知识,为读者步入后面知识的学习打下基础。
15.1 Model-based RL基础
基于模型的强化学习(Model-based RL)是一类强化学习方法,代理尝试学习环境的模型,然后利用这个模型来做出决策和优化策略。
15.1.1 基于模型的强化学习简介
基于模型的强化学习(Model-based Reinforcement Learning)是强化学习的一个分支,其核心思想是代理(agent)试图构建和使用一个模型来描述环境(environment)的动态特性,然后利用这个模型来制