(15-4)基于模型的强化学习:MBPO(Model-Based Policy Optimization)算法

15.4  MBPO(Model-Based Policy Optimization)算法

MBPO(Model-Based Policy Optimization)是一种用于强化学习的算法,它结合了模型学习和策略优化的思想。该算法的目标是通过建立一个动态环境模型来提高策略的训练效率和性能。MBPO的核心思想是在模型中学习并规划,以改善策略。

15.4.1  MBPO算法介绍

MBPO用于解决连续动作空间中的强化学习问题,其中智能体必须学会在与环境互动的过程中学习一个最佳策略,以最大化累积奖励。这类问题通常具有高维状态空间和连续动作空间,难以直接进行策略优化。

1. 模型学习

MBPO首先通过与环境交互来学习一个动力学模型。这个模型尝试建模环境的状态转移动态,即给定当前状态和动作,模型预测下一个状态的概率分布。通常,这个模型可以是神经网络或高斯过程等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值