(9-8)基于感知轨迹预测模型(BAT)的目标行为预测系统:训练模型+性能评估

9.4.5  训练模型

编写文件train.py,实现了对预定义神经网络模型的训练过程。使用PyTorch库,分别实现了数据加载、优化器的初始化、损失函数的定义以及训练和验证循环等功能。在训练过程中,模型根据训练阶段使用均方误差(MSE)或负对数似然(NLL)作为损失函数,同时进行梯度裁剪和学习率调度。训练过程中的性能指标(损失和准确率)在每个阶段进行打印输出,最终保存训练好的模型参数。

# 从model_args模块导入参数
from model_args import args
device = "cuda:0" or "cuda:1" if args["use_cuda"] else "cpu"
# 选择设备,如果启用CUDA,则选择"cuda:0"或"cuda:1",否则使用CPU
# 忽略警告
warnings.filterwarnings("ignore", category=UserWarning)
 
# 初始化网络
# ------------------
net = highwayNet(args)
if args['use_cuda']:
    net =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值