(2-3-02)目标检测与分割:基于BEV(Bird‘s Eye View)的目标检测与分割+

2.3.3  基于BEV(Bird's Eye View)的目标检测与分割

在实际应用中,基于BEV(Bird's Eye View)的目标检测与分割技术如下所示。

(1)PIXOR(Pixel-wise Object Reconstruction):将点云投影到鸟瞰图(俯视图),然后使用2D CNN进行目标检测。

(2)AVOD(Aggregate View Object Detection):结合鸟瞰图和前视图,通过多视图信息提升目标检测性能。

请看下面的例子,首先生成了虚拟的点云数据,然后将点云数据投影到鸟瞰图。接着,定义了PIXOR模型,使用2D CNN对鸟瞰图进行目标检测。最后,使用生成的数据对模型进行训练,并随机选择一张鸟瞰图进行预测。

实例2-9:使用PIXOR算法处理点云数据(codes/2/pi.py

实例文件pi.py的具体实现代码如下所示。

import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models
import matplotlib.pyplot as plt
 
# 生成虚拟点云数据
def generate_point_cloud(num_samples, num_points):
    point_clouds = []
    labels = []
    for _ in range(num_samples):
        # 生成随机点云坐标(虚拟示例)
        points = np.random.rand(num_points, 3)
        # 生成随机标签(虚拟示例,假设有2个类别)
        label = np.random.randint(0, 2)
 
        point_clouds.append(points)
        labels.append(label)
 
    return point_clouds, labels
 
# PIXOR模型
def create_pixor_model(input_shape):
    model = models.Sequential()
    model.add(layers.Conv2D(64, (3, 3), activation='relu', input_shape=input_shape))
    model.add(layers.Conv2D(128, (3, 3), activation='relu'))
    model.add(layers.Conv2D(256, (3, 3), activation='relu'))
    model.add(layers.GlobalMaxPooling2D())
    model.add(layers.Dense(256, activation='relu'))
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(2, activation='softmax'))
    return model
 
def main():
    # 定义每个样本的点数
    num_points_per_sample = 100
 
    # 生成虚拟点云数据
    point_clouds, labels = generate_point_cloud(num_samples=100, num_points=num_points_per_sample)
 
    # 投影到鸟瞰图
    birdseye_view = np.zeros((len(point_clouds), 256, 256, 3))  # 假设鸟瞰图大小为256x256
    for i, points in enumerate(point_clouds):
        # 将点云数据投影到鸟瞰图
        birdseye_view[i, :, :, 0], _, _ = np.histogram2d(points[:, 0], points[:, 1], bins=(256, 256), range=[[0, 1], [0, 1]])
        birdseye_view[i, :, :, 1], _, _ = np.histogram2d(points[:, 1], points[:, 2], bins=(256, 256), range=[[0, 1], [0, 1]])
        birdseye_view[i, :, :, 2], _, _ = np.histogram2d(points[:, 0], points[:, 2], bins=(256, 256), range=[[0, 1], [0, 1]])
 
    # 创建PIXOR模型
    pixor_model = create_pixor_model(input_shape=(256, 256, 3))
 
    # 编译模型
    pixor_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
 
    # 训练模型
    pixor_model.fit(birdseye_view, np.array(labels), epochs=5, batch_size=32)
 
    # 随机选择一张鸟瞰图进行预测
    idx = np.random.randint(0, len(point_clouds))
    prediction = pixor_model.predict(np.expand_dims(birdseye_view[idx], axis=0))
    predicted_class = np.argmax(prediction)
 
    # 输出预测结果
    print("Ground Truth:", labels[idx])
    print("Predicted Class:", predicted_class)
 
if __name__ == "__main__":
    main()

上述代码的实现流程如下:

  1. 首先,通过函数generate_point_cloud()生成虚拟点云数据,包括每个样本中点的数量和随机标签。
  2. 接着,在函数create_pixor_model()中创建了一个简单的PIXOR模型,使用了一系列卷积层和全连接层。
  3. 然后,在main函数中定义了每个样本的点数,并利用generate_point_cloud生成虚拟点云数据。接下来,通过直方图投影的方式将点云数据映射到鸟瞰图(俯视图),得到birdseye_view。
  4. 继而,使用create_pixor_model创建PIXOR模型,并编译模型,使用adam优化器和sparse_categorical_crossentropy损失函数。
  5. 最后,通过fit方法训练PIXOR模型,传入鸟瞰图数据和对应的标签。在训练完成后,随机选择一张鸟瞰图进行预测,输出实际标签和预测标签。

这样,整个流程涵盖了数据生成、模型构建、训练和预测等关键步骤,实现了基于PIXOR算法的点云目标检测。

2.3.4  基于Range Image的目标检测与分割

在实际应用中,基于Range Image的目标检测与分割技术如下所示。

(1)MV3D(Multi-View 3D):利用多个LiDAR视图的深度图像,通过多视图融合提高目标检测的准确性。

(2)F-PointNet:结合了点云和深度图的信息,实现端到端的目标检测。

请看下面的例子,功能是使用虚拟点云数据生成模拟LiDAR视图的深度图像,然后通过MV3D模型进行目标检测的训练和预测。

实例2-10:使用PIXOR算法处理点云数据(codes/2/mv.py

实例文件mv.py的具体实现代码如下所示。

import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, models
 
# 生成虚拟点云数据
def generate_point_cloud(num_samples, num_points):
    point_clouds = []
    labels = []
    for _ in range(num_samples):
        # 生成随机点云坐标(虚拟示例)
        points = np.random.rand(num_points, 3)
        # 生成随机标签(虚拟示例,假设有2个类别)
        label = np.random.randint(0, 2)
 
        point_clouds.append(points)
        labels.append(label)
 
    return point_clouds, labels
 
# 模拟生成多个LiDAR视图的深度图像
def generate_lidar_views(point_clouds):
    lidar_views = []
    for points in point_clouds:
        # 模拟从点云生成深度图像的过程
        depth_map = np.sum(points, axis=1)  # 简化为将点云坐标相加
        lidar_views.append(depth_map)
 
    return lidar_views
 
# MV3D模型
def create_mv3d_model(input_shape):
    model = models.Sequential()
    model.add(layers.Conv1D(64, 1, activation='relu', input_shape=input_shape))
    model.add(layers.Conv1D(128, 1, activation='relu'))
    model.add(layers.GlobalMaxPooling1D())
    model.add(layers.Dense(256, activation='relu'))
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(2, activation='softmax'))
    return model
 
def main():
    # 定义每个样本的点数
    num_points_per_sample = 100
 
    # 生成虚拟点云数据
    point_clouds, labels = generate_point_cloud(num_samples=100, num_points=num_points_per_sample)
 
    # 模拟生成多个LiDAR视图的深度图像
    lidar_views = generate_lidar_views(point_clouds)
 
    # 将深度图像拼接成一个三维数组作为输入
    input_data = np.expand_dims(np.array(lidar_views), axis=-1)
 
    # 创建MV3D模型
    mv3d_model = create_mv3d_model(input_shape=(num_points_per_sample, 1))
 
    # 编译模型
    mv3d_model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
 
    # 训练模型
    mv3d_model.fit(input_data, np.array(labels), epochs=5, batch_size=32)
 
    # 随机选择一个样本进行预测
    idx = np.random.randint(0, len(point_clouds))
    # 将深度图像的维度修改为三维
    prediction = mv3d_model.predict(np.expand_dims(np.expand_dims(lidar_views[idx], axis=0), axis=-1))
    predicted_class = np.argmax(prediction)
 
    # 输出预测结果
    print("Ground Truth:", labels[idx])
    print("Predicted Class:", predicted_class)
 
if __name__ == "__main__":
    main()

上述代码的实现流程如下:

  1. 首先,通过函数generate_point_cloud()生成虚拟的点云数据,包括点云坐标和随机标签。
  2. 然后,使用函数generate_lidar_views()模拟生成多个LiDAR视图的深度图像。这里简化为将每个点云坐标的值相加,形成深度图像。
  3. 接着,将生成的深度图像拼接成一个三维数组,作为MV3D模型的输入数据。使用create_mv3d_model函数创建MV3D模型,该模型包括一维卷积层、全局最大池化层和多个全连接层。
  4. 然后,编译MV3D模型,使用Adam优化器和稀疏分类交叉熵损失进行模型的配置。
  5. 接下来,通过fit函数对模型进行训练,使用生成的深度图像作为输入数据,对应的标签作为训练目标,进行5个epoch的训练。
  6. 最后,随机选择一个样本,将其深度图像的维度修改为三维,并使用模型进行预测。输出预测结果,包括真实标签和预测标签。
  • 21
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值