29.8 深度学习模型预测
对于股票市场这类序列数据,使用不考虑数据序列的模型进行预测可能会丢失数据中的重要信息。因此,在本项目中引入了递归神经网络(RNN),它能有效利用数据的序列信息进行预测。
递归神经网络主要有三种类型:标准 RNN、长短期记忆网络(LSTM)和门控递归单元(GRU)。标准 RNN 因梯度消失问题而使用较少,而 LSTM 和 GRU 采用了不同的机制来解决这一问题。GRU 相比 LSTM 更快且更高效,因为它具有更少的参数。
在本项目中,将使用 GRU 来进行股票市场的预测,因为它在处理长期依赖关系时比其他类型的递归神经网络更高效。