(29-6-01)通过回测、ARIMA 和 GRU 预测股票价格:深度学习模型预测(1)

29.8  深度学习模型预测

对于股票市场这类序列数据,使用不考虑数据序列的模型进行预测可能会丢失数据中的重要信息。因此,在本项目中引入了递归神经网络(RNN),它能有效利用数据的序列信息进行预测。

递归神经网络主要有三种类型:标准 RNN、长短期记忆网络(LSTM)和门控递归单元(GRU)。标准 RNN 因梯度消失问题而使用较少,而 LSTM 和 GRU 采用了不同的机制来解决这一问题。GRU 相比 LSTM 更快且更高效,因为它具有更少的参数。

在本项目中,将使用 GRU 来进行股票市场的预测,因为它在处理长期依赖关系时比其他类型的递归神经网络更高效。

29.8.1  准备工作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值