(1-2)DeepSeek概述:DeepSeek的架构概览

1.2  DeepSeek的架构概览

DeepSeek模型是基于经典的Transformer模型架构的,并进行了深度优化。采用了混合专家(Mixture-of-Experts, MoE)架构,通过稀疏激活提升模型效率。此外,DeepSeek引入了动态路由网络,智能地调配计算资源,以高效处理长文本和复杂逻辑任务。

1.2.1  DeepSeek的整体架构设计

DeepSeek的整体架构设计以高效处理长文本和提升推理效率为核心目标,主要包含如下所示的几个关键组成部分。

1. Multi-head Latent Attention (MLA)

  1. 低秩联合压缩:MLA通过将Key与Value分解为低秩矩阵并进行联合压缩,减少了需要存储和访问的数据量,从而降低了推理阶段的显存与时间开销。
  2. 显式位置编码融合:结合位置编码,使得模型能够在压缩后依旧保留序列顺序信息。
  3. 并行化计算优化:对压缩后的Key-Value进行并行操作,兼顾了注意力的灵活性与推理速度的提升。

2. DeepSeekMoE 架构

  1. 专家混合系统:DeepSeekMoE架构融合了专家混合系统(MoE)、多头潜在注意力机制(MLA)和RMSNorm三个核心组件。通过专家共享机制、动态路由算法和潜在变量缓存技术,该模型在保持性能水平的同时,实现了相较传统MoE模型40%的计算开销降低。
  2. 动态路由机制:针对输入令牌嵌入,路由器通过门控网络从多个专家中选择最相关的专家。这种机制确保了计算的高效性和模型性能的稳定性。
  3. 无辅助损失的负载均衡策略:DeepSeek-V3通过动态调整专家偏置,实现了负载均衡,避免了传统方法中因强制负载均衡而导致的模型性能下降。

3. 多Token预测训练目标(MTP)

同时预测多个Token:在训练过程中,模型不仅预测下一个Token,还预测后续多个位置的Token。这种机制增加了训练信号密度,有助于模型学习长期依赖关系,提高生成质量。

4. 层级策略优化

  1. 混合专家系统(MoE):内置多个专家子网络,通过精细的门控机制按需激活,增强模型容量,同时保持计算成本可控。
  2. 分阶段训练:包括预训练阶段、对齐阶段和领域微调阶段,确保模型在不同任务和领域的表现。

5. 其他优化

  1. FP8混合精度:大幅加速训练速度,在支持硬件条件下可实现更高吞吐量。
  2. 多语言与多领域数据:模型具备一定的跨语言能力,可在通用场景下保持较佳表现。

总之,DeepSeek的整体架构设计通过这些创新和优化,实现了在超大规模参数与实际推理效率之间的平衡,显著提升了模型的性能和应用价值。

1.2.2  DeepSeek的模块划分

DeepSeek 模型采用了多层次的模块化设计,以提升其性能和效率。

1.输入嵌入模块

  1. 功能:将输入文本转化为模型可处理的向量表示。
  2. 细节:通过词嵌入和位置嵌入的组合,为每个输入Token生成一个固定维度的向量表示。

2.Transformer模块

(1)多头潜在注意力机制(MLA)

  1. 功能:高效处理序列信息,降低计算和存储需求。
  2. 细节:通过低秩压缩技术,将Token的特征压缩到较小的潜在空间,再通过上投影矩阵恢复到Key、Value空间。

(2)专家混合系统(MoE)

  1. 功能:通过多个专家子网络提高模型容量和计算效率。
  2. 细节:每个MoE层包含1个共享专家和256个路由专家,每个Token选择8个专家进行处理。

(3)RMSNorm归一化层

  1. 功能:稳定训练过程,加速模型收敛。
  2. 细节:在每个Transformer模块中使用RMSNorm归一化层,对输入数据进行归一化处理。

3.优化策略模块

(1)多Token预测训练目标(MTP)

  1. 功能:增加训练信号密度,提高生成质量。
  2. 细节:在训练过程中,模型不仅预测下一个Token,还预测后续多个位置的Token。

(2)负载均衡策略

  1. 功能:确保专家负载均衡,提高模型性能。
  2. 细节:通过动态调整专家偏置项,实现负载均衡,无需额外的辅助损失函数。

4.输出层

  1. 功能:将Transformer模块的输出转化为最终的预测结果。
  2. 细节:通过一个线性层将Transformer的输出映射到词汇表大小的维度,得到每个Token的预测概率分布。

5.其他辅助模块

(1)FP8混合精度训练模块

  1. 功能:降低训练时的GPU内存占用和计算开销。
  2. 细节:通过精细的量化策略和高精度累加,实现FP8混合精度训练。

(2)残差流分形解码架构

  1. 功能:提高推理效率。
  2. 细节:通过主次双Token预测和动态损失融合,提升单次前向传播的学习效率。

1.2.3  DeepSeek与其他模型的技术对比

DeepSeek 模型在人工智能领域引起了广泛关注,其性能和特点与其他大型语言模型(LLM)相比,展现出独特的优势和差异。

1. 与GPT系列对比

  1. 技术架构:DeepSeek采用混合架构,结合了深度学习与强化学习技术,注重高效性和灵活性,支持快速迭代和定制化开发;GPT系列基于Transformer架构,以其强大的语言生成能力和上下文理解能力著称。
  2. 性能表现:DeepSeek在语言生成任务中表现出色,尤其在中文语境下的表现优于GPT系列,生成的文本更加符合中文表达习惯,且在多轮对话中能够保持较高的连贯性;GPT-4在英文任务中表现优异,但在处理中文时偶尔会出现语义偏差或文化背景理解不足的问题。
  3. 计算效率与资源消耗:DeepSeek在计算效率上表现优异,其模型设计优化了资源消耗,适合在资源有限的环境中部署;GPT-4和Gemini由于模型规模较大,对计算资源的需求较高,部署成本较高。
  4. 应用场景:DeepSeek适用于多种场景,包括智能客服、内容创作、教育辅助和数据分析等,其高效性和灵活性使其在企业级应用中具有较大优势;GPT系列在内容创作、代码生成和学术研究等领域表现优异,但其高昂的部署成本限制了其在中小企业中的应用。

2. 与Claude对比

  1. 技术架构:DeepSeek采用混合架构,注重高效性和灵活性;Claude以“对齐性”为核心设计理念,注重模型的道德和安全性能。
  2. 性能表现:DeepSeek在语言生成任务中表现出色,尤其在中文语境下的表现优于Claude;Claude在生成内容的安全性上表现优异,但在复杂语言任务上的灵活性和创造力稍显不足。
  3. 计算效率与资源消耗:DeepSeek在计算效率上表现优异,适合在资源有限的环境中部署;Claude在计算效率上表现较好,但其生成速度略慢于DeepSeek。
  4. 应用场景:DeepSeek适用于多种场景,包括智能客服、内容创作、教育辅助和数据分析等;Claude在需要高安全性和道德标准的场景(如法律咨询、医疗辅助)中表现优异,但其应用范围相对较窄。

3. 与Gemini对比

  1. 技术架构:DeepSeek采用混合架构,注重高效性和灵活性;Gemini是多模态AI模型,能够同时处理文本、图像和音频等多种数据类型,其架构设计注重多模态融合。
  2. 性能表现:DeepSeek在语言生成任务中表现出色,尤其在中文语境下的表现优于Gemini;Gemini在多模态任务中表现突出,但在纯文本生成任务上略逊一筹。
  3. 计算效率与资源消耗:DeepSeek在计算效率上表现优异,适合在资源有限的环境中部署;Gemini由于模型规模较大,对计算资源的需求较高,部署成本较高。
  4. 应用场景:DeepSeek适用于多种场景,包括智能客服、内容创作、教育辅助和数据分析等;Gemini在多模态任务(如图像描述、视频分析)中表现突出,适合用于多媒体内容生成和分析。

4. 与Switch Transformer对比

  1. 参数效率:在配置64个专家(其中8个共享)的情况下,DeepSeekMoE较Switch Transformer(64个专家)实现了1.8倍的吞吐量提升,同时参数量降低30%。
  2. 训练效率:相比参数规模相当(13B)的密集Transformer,DeepSeekMoE训练速度提升2.1倍。
  3. 推理性能:MLA缓存机制使自回归任务的延迟降低35%。
  4. 模型性能:在WikiText-103测试集上,DeepSeekMoE的困惑度达到12.3,优于Switch Transformer的14.1;在WMT'14 EN-DE测试集上,DeepSeekMoE的BLEU得分达44.7,较Transformer++提升2.1分。

5. 与Llama对比

  1. 训练成本:DeepSeek-V3的训练费用相比GPT-4等大模型要少得多,据外媒估计,Meta的大模型Llama-3.1的训练投资超过了5亿美元。
  2. 性能表现:DeepSeek-V3在多项评测中表现优异,甚至直逼世界顶尖的闭源模型GPT-4o和Claude-3.5-Sonnet。

总体而言,DeepSeek 模型在性能、成本效益、开源策略、技术架构和应用领域等方面,与其他大型语言模型相比,展现出独特的优势和差异。在DeepSeek官网展示了与其他大模型的对比数据,如图2-1所示。

图2-1  DeepSeek与其他大模型的对比数据

根据图2-1中的对比数据,可以总结出以下对比信息。

1. 综合性能与推理能力

  1. 推理速度和效率提升明显:DeepSeek-V3 相较于历史模型(如 DeepSeek-V2.5、Qwen2.5 和 Llama3.1)在推理速度上有大幅提升,这表现在 DROP、IF-Eval、LiveCodeBench 等多项指标上,其 3-shot F1 分数、Prompt Strict 模式下的表现以及代码生成任务均领先于其他开源模型。
  2. 综合能力出众:在 MMLU(包括标准版、Redux 及 Pro 版本)的英语评测中,DeepSeek-V3 的表现处于高水平,甚至与部分闭源模型(如 Claude-3.5 和 GPT-4o)相当。中文评测(CLUEWSC、C-Eval 和 C-SimpleQA)上,DeepSeek-V3 同样取得了最高分数,显示出其跨语言综合能力的均衡性。

2. 参数架构与效率

  1. MoE 架构优势:DeepSeek-V3 采用混合专家(MoE)架构,使得其在总参数量(671B)远高于某些密集模型(如 Qwen2.5 的 72B、Llama3.1 的 405B)的同时,通过仅激活部分参数(37B)实现高效计算。这种设计不仅提升了模型容量,也保证了推理时的高效能。

3. 代码(Code)与数学(Math)能力

  1. 代码生成任务:在 HumanEval-Mul、LiveCodeBench 以及 Codeforces 等代码任务上,DeepSeek-V3 均表现优于同类开源模型,显示出其在复杂编程和逻辑推理任务上的能力。
  2. 数学题解能力: 表中 AIME 2024、MATH-500 和 CNMO 2024 等数学评测数据表明,DeepSeek-V3 在数学推理和问题解决上有明显优势,其 Pass@1 及 EM 分数均高于其他模型,体现了更强的逻辑和数学处理能力。

4. 与闭源模型的对比:与闭源模型旗鼓相当

虽然部分指标如 GPQA-Diamond 和 SimpleQA 上,闭源模型(如 Claude-3.5 和 GPT-4o)仍有一定优势,但整体来看,DeepSeek-V3 在大多数评测中都处于领先地位或与顶尖闭源模型不相上下,成为开源模型中的佼佼者。

5. 对比结论

  1. DeepSeek-V3在多个领域和任务中表现出色,尤其是在English、Code和Math等领域的任务中,其表现与世界上最先进的闭源模型不分伯仲。
  2. DeepSeek-V3在开源模型中位列榜首,显示出其在综合能力上的强大竞争力。
  3. DeepSeek-V3在多个指标上表现优异,显示出其在技术架构和训练方法上的优化效果。

综上所述,DeepSeek-V3 在推理速度、综合语言理解、代码生成以及数学推理等多个维度上均展现出显著的优势。其采用的 MoE 架构和高效的参数激活机制使其在保持大规模模型容量的同时,实现了高效计算和优异表现,已成为目前大模型主流榜单中开源模型的领跑者,并与世界上最先进的闭源模型比肩。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码农三叔

感谢鼓励

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值