最优传输映射-深度学习几何观点

对顾老师的课做了一个笔记

简介

核心问题:最优传输研究用最经济的方式,将一个分布变换成另一个分布
核心特点:最优传输的一体两面:1.统计 2.几何
常用算法:1.线性规划 2.几何变分 3.流体力学 4.数值方程
求解Monge-Ampere方程,强烈非线性。
常见应用: 深度学习:分布之间的距离
经济运筹:产销平衡,资源分配
计算机图形学:保面积参数化
数字图像处理:风格转化
自然语言处理:词汇集学习
计算机视觉:曲面配准
医学图像:图像配准,分类
光学设计:透镜,反射镜设计
在这里插入图片描述

计算机图形学:保面积参数化
医学图像应用:判断大脑皮层
在这里插入图片描述
在自动驾驶和计算机视觉中,曲面配准是比较重要的问题。

在这里插入图片描述

几何:Minkows

在图像分类任务中,数据的长尾分布会严重影响模型的性能,尤其是对于少数类别的识别。最优传输理论可以在此类问题中发挥重要作用,通过优化数据分布来提高模型的泛化能力。结合最优传输理论深度学习模型,我们可以采取以下策略来优化性能: 参考资源链接:[最优传输理论算法在深度学习中的应用——郎大宇硕士论文](https://wenku.csdn.net/doc/7yddd4q7dy?spm=1055.2569.3001.10343) 首先,使用Benamou-Brenier方法对数据进行预处理。该方法能够通过连续时间的动态规划,找到一种最优传输映射,将少数类别数据映射到更多样化且更接近多数类别的分布。这可以帮助模型更好地学习少数类别的特征表示。 其次,应用Sinkhorn算法进行类别权重的优化。Sinkhorn算法通过熵正则化和快速迭代,可以平衡不同类别在损失函数中的权重,从而对长尾数据中的少数类别给予更多的关注,减少模型对多数类别的偏见。 最后,引入FFT-OT方法来加速大规模最优传输问题的求解。由于图像数据通常包含大量的样本,FFT-OT方法可以有效地利用傅里叶变换来加速优化过程,提高算法的计算效率,从而在实际应用中快速调整模型。 通过结合这三种算法的优势,我们可以设计出一种改进的深度学习模型,该模型能够更加准确地进行图像分类,特别是在面对数据分布严重不平衡的情况时,优化模型的性能表现。 为了更深入地理解这些算法在深度学习中的具体应用,建议阅读这份资料:《最优传输理论算法在深度学习中的应用——郎大宇硕士论文》。这篇论文详细介绍了三种最优传输算法的理论基础和实现,并且提供了在图像分类任务中应用这些算法的实验结果和分析。通过这份资料,读者不仅能够获得理论上的深入理解,还能够掌握实际操作中的技巧和方法,为进一步的研究和应用打下坚实的基础。 参考资源链接:[最优传输理论算法在深度学习中的应用——郎大宇硕士论文](https://wenku.csdn.net/doc/7yddd4q7dy?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值