最优传输映射-深度学习几何观点

本文探讨了最优传输理论在深度学习中的关键作用,包括其在分布变换、几何特征和实际应用中的体现,如图像处理、计算机视觉和医学图像分析。重点介绍了Monge-Ampere方程和相关算法,以及深度学习中的核心问题,如学习内容和结构理解。
摘要由CSDN通过智能技术生成

对顾老师的课做了一个笔记

简介

核心问题:最优传输研究用最经济的方式,将一个分布变换成另一个分布
核心特点:最优传输的一体两面:1.统计 2.几何
常用算法:1.线性规划 2.几何变分 3.流体力学 4.数值方程
求解Monge-Ampere方程,强烈非线性。
常见应用: 深度学习:分布之间的距离
经济运筹:产销平衡,资源分配
计算机图形学:保面积参数化
数字图像处理:风格转化
自然语言处理:词汇集学习
计算机视觉:曲面配准
医学图像:图像配准,分类
光学设计:透镜,反射镜设计
在这里插入图片描述

计算机图形学:保面积参数化
医学图像应用:判断大脑皮层
在这里插入图片描述
在自动驾驶和计算机视觉中,曲面配准是比较重要的问题。

在这里插入图片描述

几何:Minkows

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值