【图像分类】基于深度学习的杂草类型识别(9种类别,ResNet网络)

该博文介绍了如何使用PyTorch和ResNet深度学习模型进行杂草类型的图像分类,包括数据集介绍、划分、模型训练、测试、损失曲线绘制及预测。项目实现95.7%的平均准确率,覆盖9种澳大利亚常见杂草。
摘要由CSDN通过智能技术生成

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊,最好还是订阅,将知识装进自己的脑袋里)

本篇博文,我们将使用PyTorch深度学习框架搭建ResNet实现杂草类型识别,附完整的项目代码和数据集,可以说是全网最详细的手把手教程,初学者可以很好的入门,论文/设计可参考借鉴,其他研究者可以加深ResNet的理解。

先看本项目训练的分类模型的识别效果:

在这里插入图片描述

ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值