基于Simulink的Chaos混沌电路设计与仿真

本文介绍了Chua电路的理论概述,包括其作为混沌电路的特性,以及Lorenz关于混沌的定义。还提到了算法在Matlab2022a中的运行情况,并展示了部分核心程序和完整的工程实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

 

2.算法运行软件版本

matlab2022a

3.部分核心程序

07_001m 

4.算法理论概述

        混沌电路是一类特殊的非线性电路,其输出信号表现出无规律、非周期性、高度敏感的动态行为,这种行为通常称为混沌。混沌电路的研究始于20世纪60年代,混沌现象在数学、物理、工程等领域产生了广泛的影响。下面将详细介绍一种经典的混沌电路,即“Chua's Circuit”(Chua电路)。

        混沌是非线性确定系统中由于内察随机性而产生的外在复杂表现,是一种貌似随机的伪随机运动。它的基本特征之一是系统对初始条件的极端敏感性,即初始条件的微小差异会随时间的演化呈指数增长,最终不可接受。其长期行为表现出明显的随机,不可控制和不可预测。人们对混沌现象的研究起始于70年代。被誉为“混沌之父”的美国科学家Lorenz曾经给出过一个通俗的定义:一个真实的物理系统,在排除了所有的随机性影响以后,仍有貌似随机的表现,那么这个系统就是混沌的。Lorenz这个定义说出了混沌的如下基本特征:(l)混沌是系统固有的特性。系统所表现出来的复杂性是系统自身的,内在的因素造成的,并不是在外界的干扰下所产生的,是系统内在随机性的表现。(2)混沌是具有确定性的。混沌的确定性分为两个方面:首先,混沌系统是确定的系统,是一个真实的物理系统;其次,混沌的表现是貌似随机,而并不是真正的随机,系统的每一时刻状态都受到前一状态的影响,是确定出现的,而不是像随机系统那样随意出现,混沌系统的状态是可以完全重现的,这和随机系统不同。(3)混沌系统的表现具有复杂性。混沌系统的表现是貌似随机的,它不是周期运动,也不是准周期运动,具有良好的自相关性和低频宽带的特点。

        电路的状态变量由 xx, yy, zz 表示,其非线性微分方程可以写为:

5.算法完整程序工程

OOOOO

OOO

O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值