基于深度学习的海洋鱼类识别算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

............................................................
% 对测试集进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Testing_Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Testing_Dataset.Labels);
% 随机选择一些图像进行可视化
index = randperm(numel(Resized_Testing_Dataset.Files), 50);
figure

for i = 1:25
    subplot(5,5,i)
    I = readimage(Testing_Dataset, index(i));% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i));
    % 显示预测的标签和置信度
    if double(label)==1
       name='鱼类1';
    end 
    if double(label)==2
       name='鱼类2';
    end 
    if double(label)==3
       name='鱼类3';
    end 
    if double(label)==4
       name='鱼类4';
    end 
    if double(label)==5
       name='鱼类5';
    end 



    title(name);
end


figure

for i = 1:25
    subplot(5,5,i)
    I = readimage(Testing_Dataset, index(i+25));% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i+25));
    % 显示预测的标签和置信度
    if double(label)==1
       name='鱼类1';
    end 
    if double(label)==2
       name='鱼类2';
    end 
    if double(label)==3
       name='鱼类3';
    end 
    if double(label)==4
       name='鱼类4';
    end 
    if double(label)==5
       name='鱼类5';
    end 



    title(name);
end
117

4.算法理论概述

         深度学习在海洋鱼类识别中常采用卷积神经网络(Convolutional Neural Networks, CNNs)。CNN由多个层级组成,包括卷积层、池化层、全连接层以及分类层。典型流程如下:

训练CNN的过程涉及前向传播、损失计算和反向传播:

      为了提高模型性能,常常采用数据增强技术(如旋转、翻转、裁剪等)增加训练样本多样性。此外,也可利用预训练模型进行迁移学习,如在ImageNet上预训练的ResNet、VGG等网络作为基础模型,针对特定的海洋鱼类识别任务微调顶层网络参数。

       模型训练完成后,在验证集和测试集上进行评估,常用的评估指标包括准确率、精确率、召回率以及F1分数等。

        综上所述,基于深度学习的海洋鱼类识别算法主要通过构建和训练深度卷积神经网络,从大量标注的海洋鱼类图像中学习特征,进而对未知图像进行准确的鱼类种类识别。这个过程涉及到复杂的数学运算和优化策略,体现了深度学习在图像识别领域的强大能力。

5.算法完整程序工程

OOOOO

OOO

O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值