基于PSO优化的CNN-GRU-Attention的时间序列回归预测matlab仿真

本文介绍了使用卷积神经网络、GRU网络和注意力机制优化时间序列预测的算法,结合粒子群优化(PSO)调整深度学习模型的超参数。展示了算法运行前后的效果对比和核心程序片段,包括PSO的迭代过程和CNN-LSTM-Attention模型的应用。
摘要由CSDN通过智能技术生成

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1卷积神经网络(CNN)在时间序列中的应用

4.2 GRU网络

4.3 注意力机制(Attention)

5.算法完整程序工程


1.算法运行效果图预览

优化前

优化后

2.算法运行软件版本

matlab2022a

3.部分核心程序

.....................................................................
for i=1:Iter
    i
    for j=1:Npeop
        rng(i+j)
        if func_obj(x1(j,:))<pbest1(j)
           p1(j,:)   = x1(j,:);%变量
           pbest1(j) = func_obj(x1(j,:));
        end
        if pbest1(j)<gbest1
           g1     = p1(j,:);%变量
           gbest1 = pbest1(j);
        end
        
        v1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
        x1(j,:) = x1(j,:)+v1(j,:); 
         
        for k=1:dims
            if x1(j,k) >= tmps(2,k)
               x1(j,k) = tmps(2,k);
            end
            if x1(j,k) <= tmps(1,k)
               x1(j,k) = tmps(1,k);
            end
        end

        for k=1:dims
            if v1(j,k) >= tmps(2,k)/2
               v1(j,k) =  tmps(2,k)/2;
            end
            if v1(j,k) <= tmps(1,k)/2
               v1(j,k) =  tmps(1,k)/2;
            end
        end

    end
    gb1(i)=gbest1 
end

......................................................

save R2.mat Num2 Tat_test T_sim2 gb1
125

4.算法理论概述

       时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。粒子群优化(PSO)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。       

         粒子群优化(PSO)是一种基于群体智能的全局优化算法。每个粒子代表一个可能的解决方案(即模型超参数组合),通过迭代更新粒子的速度和位置,寻找最优解。对于超参数优化问题,粒子位置Pi​表示模型超参数,速度Vi​表示超参数调整方向和幅度。

4.1卷积神经网络(CNN)在时间序列中的应用

        在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

           CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 GRU网络

        GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。

      GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt​并更新隐藏状态ht​。其核心创新在于引入了两个门控机制:更新门(Update Gate)重置门(Reset Gate)

4.3 注意力机制(Attention)

       注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。       

       CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

5.算法完整程序工程

OOOOO

OOO

O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简简单单做算法

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值