恒定加速度Kalman模型
1. scenario:我们想用卡尔曼滤波来追踪3D空间中某个具有恒定加速度的物体,我们有一个位置传感器可以用来观测物体位置,我们想得到物体的3D位置以及速度。
2. Description :
假设物体状态由六维vector定义如下:

系统的预测方程为:
![]()
假设我们没有控制输入,那么预测方程可以表示如下:
y = Hx
本文介绍了如何使用卡尔曼滤波器追踪3D空间中恒定加速度物体的位置和速度。通过设定系统预测方程、观测方程,以及详细的状态转移矩阵和协方差矩阵,最终实现滤波效果,有效平滑了噪声观测数据,提高了轨迹跟踪的准确性。
恒定加速度Kalman模型
1. scenario:我们想用卡尔曼滤波来追踪3D空间中某个具有恒定加速度的物体,我们有一个位置传感器可以用来观测物体位置,我们想得到物体的3D位置以及速度。
2. Description :
假设物体状态由六维vector定义如下:

系统的预测方程为:
![]()
假设我们没有控制输入,那么预测方程可以表示如下:
y = Hx
956
482
860

被折叠的 条评论
为什么被折叠?