大模型能力扩展之——提示词(Prompt),知识库,思维链(CoT)和Agent(代理)

大模型的推理能力配合外部工具才能真正发挥大模型的作用**”**

在学习和使用大模型的过程中,我们会发现大模型只能用来进行一下简单的问答;一旦涉及到复杂的问题,大模型就无能为力了。

其原因就在于我们并不会使用大模型,或者说不知道怎么发挥大模型的强大能力。‍‍‍

虽然很多人使用别人开发好的AI工具去生成一些文本,图像等内容进行创作;或者通过外挂知识库的方式来增强大模型的能力范围,但离真正发挥大模型的能力还差好远。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

01

怎么发挥大模型的能力?‍‍‍‍‍

对大模型的使用大致分为以下几种类型,入门级别可以简单使用大模型提供的聊天窗口进行问答来解决一些问题;再厉害一点的就是学会使用一些第三方基于大模型开发的一些AI工具。

而在更加高级的使用场景中,就不是普通人能够完成的了,这就需要有一定的技术和开发能力才能实现。‍‍‍‍‍

比如,自己搭建一个知识库,每次使用大模型的时候都会从知识库中获取知识输入到大模型,以获得更好的结果;而再高级一点的就是使用提示词+知识库+思维链+外部工具(API,功能代码等)来实现人类才能做到的事情。‍‍‍‍‍‍‍‍

举个例子,通过以上方式,告诉大模型给我规划一个三天两晚的短期旅程,并且要给出完整的可行性方案,还要让大模型帮你提取预定好酒店和门票等。‍‍‍‍‍‍‍‍‍‍‍

这个依靠大模型本身的能力是无法完成的,因此就需要使用外部工具,而这也叫做Agent(代理)技术。‍

_大模型知识来源_‍‍‍‍‍

我们都知道大模型有很强大的知识储备,在预训练阶段用于训练的数据越多,数据质量越好,大模型的性能就越好。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

一般来说,大模型的知识来源有三个方向,第一种就是大模型本身的知识储备,这些知识来源于预训练数据;这也是为什么大模型在不依靠任何外力的情况下就可以回答一些问题。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

但由于预训练的原因,大模型每次更新自身知识就需要重新训练或者微调;由于成本和技术原因就导致大模型自身知识更新不及时;这时就会出现一个问题,在涉及到大模型自身知识范围之外的问题时,大模型就会“一本正经的跟你胡说八道”。‍‍‍‍‍

因此就有了后面两种情况,第一种就是知识库,简单来说就是给大模型配置一个资料库。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这样,大模型在遇到问题的时候就可以依靠自身的知识储备加上外部资料库的知识来回答问题。这样就间接解决了大模型知识更新不及时的问题。‍‍‍‍‍‍‍

但仅有知识库还不够完善,因为有些东西是动态改变的,比如说每天的天气情况,金融市场的交易情况等;这是知识库解决不了的问题,因此就需要给大模型配备外部工具,比如天气查询的API或者股票查询接口等。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

这时,大模型就可以利用其Function call的能力来调用外部工具来实现目的。‍‍‍

**Function call是在大模型之上封装的一层可以调用外部工具的一个方法,有些模型实现了Function call的功能,而有些模型没有实现这个功能,这时就需要你自己来实现。**‍‍‍‍‍‍‍‍‍

以上就是大模型知识的三个来源,根本不同的情景,大模型可能会使用自身的知识来解决问题;在自身知识解决不了的情况下就会使用知识库和外部工具的方式来解决——前提是配置了知识库和外部工具集。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

_Agent(代理)_‍‍‍‍‍‍‍

人工智能代理(AI Agent),目前为止其并没有一个公认的定义;简单来说就是让大模型能够像真正的人类一样来完成更加复杂任务的一种方式和方法论。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

因为大模型虽然能力很强大,但从应用的角度来说它更像是一个“大脑”,它能够理解问题,思考问题,但没办法解决问题。‍‍

比如说我想出去玩,让大模型给我规划行程,这个是没问题的;但你让它帮你订票就有问题了,而这时Agent就出现了,它就是可以让大模型不但能帮你规划,还能帮你订票。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

提示词

使用过大模型的人都知道,提示词直接影响到大模型的表现;简单的提升词虽然也能让大模型完成任务,但往往完成的不是很好,甚至会有很大问题。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

而在专业的提升词工程中,大模型会有几个角色,一个是system(系统)角色,一个是assistant(助手)角色和user(用户)角色。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

system角色是来限定大模型定角色范围的,比如是老师,科学家,医生等,不同的角色会擅长不同的领域;而user角色就是我们使用者的角色,可以用来提出问题等;assistant角色就是大模型本身或者说是大模型回答user角色问题的“助手”。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

因此良好的提示词能够激发大模型的能力,比如其推理和规划的能力;提示词越详细大模型就能回答的越好。‍‍‍‍

比如说,在设计提示词时需要告诉大模型的角色,当前背景,需要完成的任务以及大模型回答的风格等。‍‍‍‍‍‍

您想要ChatGPT帮您写一篇关于气候变化的文章,最终的提示词可能是这样:‍

作为一个专业研究气候变化的科学家(CR:能力与角色),请基于当前的科学共识和最新的研究数据(I:洞察),撰写一篇详细且科学严谨的报告(S:陈述),内容需涵盖气候变化的原因、影响以及可能的解决方案。请采用客观且权威的写作风格(P:个性),并提供几种不同的结构和论点供选择(E:实验)

https://blog.csdn.net/qq_17827079/article/details/136475535

思维链

而仅有提示词功能还不足以完全发挥大模型的能力,因此又有了思维链(CoT)的出现,思维链的作用就是让大模型有一个完整的思考过程,并且可以给出一些案例,来让大模型处理更加复杂的任务。‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

比如说,让大模型帮你设计一个详细的理财方案;虽然依靠大模型或者知识库的能力,大模型也能完成任务;但完成任务的效果可能就不是那么满意了。‍‍‍‍‍‍

因此,大模型就可以通过自身的推理能力以及外部工具,通过多次思考来完成这个任务。‍‍‍‍‍

比如说,你想要一个理财方案,第一步要评估当前的财务情况;第二步要明确理财目标;第三步要怎么具体实施等。‍‍‍‍‍‍

而这就需要借助大模型等推理和规划能力来制定一个详细的可行性方案。‍‍‍‍‍‍‍‍‍‍‍‍‍

思维链的作用就是让大模型像人类一样思考,一步一步的来完成任务。‍‍‍‍‍‍

外部工具(tools)

外部工具的作用就是让大模型可以实时获取当前的信息,比如股票的价格波动;以及能够借助外部工具自主完成任务,比如订票。‍‍‍‍‍‍‍‍‍‍‍‍‍

通过以上方式用户就可以创建一个具有某种功能的Agent,比如一个理财大师;而用户可以创建多个不同的Agent来互相协作,比如创建一个投资人的Agent,它能够根据当前的市场环境做出准确的投资决策;然后再创建一个软件开发的Agent,这样就可以让两个角色互相配合,软件开发的Agent复杂产品的设计和研发,投资Agent复杂做市场融资和市场开拓。‍‍‍‍‍‍‍‍

总结

大模型并不只是一个用来回答问题的机器人,通过提示词,思维链,知识库和工具集的合理配合,它能够发挥人们无法想象的威力。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

<think>好的,我现在需要帮用户解决如何设计编写结构化提示词以优化Agent Prompt的性能的问题。首先,我需要回顾用户提供的引用内容,看看有哪些相关的信息可以利用。用户提到了结构化Prompt的重要性,包括角色、任务、要求等部分,还提到了模块化Prompt思维CoT递归提示等方法。 首先,我应该明确结构化Prompt的基本框架,这可能包括角色定义、任务分解、具体要求、约束条件输出示例。根据引用[1][2],结构化Prompt需要像写文章一样,有明确的标题子标题,分块处理。比如用户提到的角色、任务、要求等部分,这些都需要清晰分开。 接下来,用户的问题是关于Agent的,所以可能需要考虑Agent的特殊性。Agent通常需要处理复杂的任务,可能需要多步骤的思考或工具调用。引用[4]提到思维递归提示,这可能适用于Agent的场景,比如让Agent分步骤思考或递归解决问题。 然后,我需要考虑如何将这些元素结合起来。比如,在结构化提示中明确Agent的角色,分解任务为步骤,加入思维引导逐步处理,同时设定具体格式要求工具调用规范。引用[3]提到Agent本质是Prompt工程,所以可能需要强调模块化分块处理,每个模块负责不同功能。 另外,用户可能需要具体的例子来理解如何编写。比如,引用中的示例快速排序代码结构,可以类比到Prompt的结构化设计。同时,性能优化方面,引用[3]提到RAG数据飞轮,可能需要建议结合外部知识库或数据迭代。 还要注意用户的引用[1]提到提示词生成器,作为工具帮助生成高质量的Prompt,可能建议用户使用或参考这样的工具来优化他们的设计。 最后,确保回答符合用户的要求:结构清晰,分步骤,真实可靠。可能需要分点说明设计步骤,每个步骤结合引用中的内容,并给出示例,比如一个结构化的Agent Prompt模板。同时,生成的相关问题要围绕结构化PromptAgent性能优化展开,帮助用户进一步探索。</think># 结构化提示词设计方法(Agent场景) ## 一、设计原则 根据结构化Prompt的核心要素[^1][^2],建议采用以下分层结构: **1. 角色定义层** ```text [角色] 你是一个具备多领域知识的智能助手,需要完成复杂任务分解、工具调用决策验证三大核心功能。专业领域覆盖金融数据分析、科研文献解读工程方案设计。 ``` **2. 任务分解层** ```python # 采用思维(CoT)格式[^4] 任务流程: 1. 接收用户原始指令 2. 解析需求类型(需调用分类器模块) 3. 根据类型选择工具库: - 数据分析类 => 调用Python执行器 - 知识查询类 => 激活RAG检索模块[^3] 4. 执行结果验证(置信度需>90%) ``` **3. 格式规范层** $$格式要求 = \begin{cases} 响应包含: & 任务状态码(HTTP标准) \\ & 执行步骤日志 \\ & 最终结论(带置信度评分) \\ 时间限制: & 单任务\leq5秒 \\ 错误处理: & 自动重试\leq3次 \end{cases}$$ ## 二、优化技巧 1. **模块化设计**:将复杂任务拆分为独立的功能单元[^2] ```text [工具调用规范] <<数学计算模块>> 输入格式:Latex公式 输出要求:保留计算过程+最终结果 精度标准:浮点数保留4位小数 <<知识检索模块>> 检索范围:2020年后权威期刊 引用格式:[序号]作者(年份) ``` 2. **动态上下文管理** ```python # 递归提示实现[^4] def context_manager(query): if contains_formula(query): activate_module('math_solver') elif needs_external_data(query): trigger_rag(retrieval_count=3) ``` 3. **验证反馈机制** $$验证流程 = 执行结果 \rightarrow 逻辑校验 \rightarrow 置信度评估 \rightarrow \begin{cases} \geq90\% & 直接输出 \\ 60-89\% & 标注存疑点 \\ \leq59\% & 请求人工干预 \end{cases}$$ ## 三、完整模板示例 ```text [系统角色] 专业医疗诊断辅助Agent,集成最新临床指南病例数据库 [核心能力] 1. 症状-疾病关联分析(基于贝叶斯网络) 2. 药物相互作用检查 3. 诊疗方案生成 [输入规范] - 症状描述:按发生时间排序 - 患者特征:年龄/性别/病史 - 特殊要求:过敏药物等 [处理流程] 1. 症状标准化 → 2. 生成鉴别诊断 → 3. 验证诊断合理性 [输出要求] 诊断报告包含: - 首要诊断(置信度%) - 备选诊断(按概率排序) - 推荐检查清单 - 风险警示(如有) [质量保障] - 引用指南版本:[2023 NCCN指南] - 更新频率:每周同步PubMed最新文献 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值