自己电脑搭建个人知识库,一般电脑也能玩(支持通义千问、GPT等)。零基础入门到精通,看这篇就够了!赶紧收藏!

结合AI大模型能力,构建个人知识库,做一个问答系统。

很多人都有这种需求。

因为此种模式,既能发挥大模型的AI问答能力,又能考虑到我们自己个性的文档知识库。

常见的方案有这样几种:

1. 调用闭源大模型(如ChatGPT, Claude)API,使用向量数据库管理个人知识库;

2. 本地部署开源大模型(如Qwen,Llama),使用向量数据库管理个人知识库;

第一种方式调用API需要付费,第二种方式虽然不花钱,但是对个人电脑性能要求很高,运行本地大模型+向量数据库,两者叠加得配置一台高性能电脑,变相增加投入了。

有没有一个更好的方案,既不花钱,一般电脑又能玩的搭建方法?

我这篇文章的目标就是尝试探索这样一种解决方案,帮大家做到既不花钱,又一般电脑也能玩。这个大框架下,再从中选择最容易搭建的方法,尽量少的安装第三方工具包,这样大家非常容易部署。

最后的解决方案,只需要一个代码文件,全部搞定。

好的,朝着目标,咱们走起。

前期准备

1. 准备一台8G以上内存的电脑,无显卡也问题不大;

2. 通过我前几天发的这篇文章:在本地搭建好qwen:7b模型,文章中介绍的应该是最简单的方案了,无需花钱,开源免费。

3. 再会一点Python安装包的技能,基本就是一条命令:pip install 安装包的名字

方案介绍

既不花钱,一般电脑又能玩的方案,一句话总结:本地大模型(qwen:7b)+ 文档搜索工具(whoosh)

使用此方案搭建的LLM+个人知识库,网页界面demo如下:

若提问内容在我们的文档系统中,输出哪些文档命中,包括内容,然后大模型Qwen自动对内容进行深度分析。

总体来说,这种模式充分发挥了高性能检索+LLM问答的两者优势,用起来还是挺舒服的。

功能介绍

总体功能,这是一款轻量级 LLM(大语言模型)+ 知识库应用,结合了 Whoosh 全文搜索引擎和本地化部署的 Qwen-7B 模型,提供高效的个人知识检索和AI智能问答功能。

功能一:文件上传与知识库构建

功能描述:用户可以上传 .docx 文件,这些文件的内容会被解析并存储到知识库中。系统通过 Whoosh 构建索引。如下图所示:

大家可以基于我的程序,继续扩展对PDF,Excel,PPT等内容的检索支持。

此功能核心代码:

功能二:知识库搜索

功能描述:用户可以输入关键词或问题,从知识库中检索相关内容。

如果检索结果重复,系统会自动过滤掉重复项。如下图所示:

检索功能核心代码:

功能三:Qwen-7B 智能问答

功能描述: 若知识库中检索到相关内容,系统会继续调用本地部署的 Qwen-7B 模型,对检索的知识做深度分析;如果未在知识库搜索到内容,会直接调用大模型回答。如下图所示:

此功能核心代码:

Whoosh介绍

Whoosh 是一个轻量级的全文搜索引擎库,用于快速构建本地索引和查询。它支持灵活的字段配置、多种查询类型,并通过纯 Python 实现,无需额外依赖,非常适合小型项目或知识库系统。

Whoosh 工作流程主要分为下面三个步骤:
  1. 初始化索引:调用 initialize_index() 创建或加载索引。详见代码文件的此函数实现。

  2. 添加文档:用户上传 .docx 文件后,调用 add_document_to_index() 将文档内容分词并存储到索引。

  3. 执行搜索:用户输入查询关键词后,调用 search_knowledge_base() 检索索引。

更多Whoosh使用介绍参考:https://whoosh.readthedocs.io/

完整代码文件只有1个,一共118行,想要完整源码部署LLM+个人知识库的,在下面我的公众号回复:知识库

总结一下

本篇介绍了LLM+个人知识库搭建方法,此技术方案具有以下优势:

1. 轻量级和高效:Whoosh 提供快速的全文搜索能力,无需依赖数据库或云服务。本地化的 Qwen-7B 模型,离线运行,节省网络资源。

2. 中文支持:使用 jieba 实现中文分词,优化了中文文本的索引与查询。

3. 易于扩展:知识库和智能问答可以分别扩展,如添加更多文件格式支持或更高效的语言模型。

这种方案除了支持开源大模型外,对于闭源大模型GPT等同样也是支持的,感兴趣的可以玩一下。

以上全文2678字,9张图。如果这篇文章觉得对你有用,可否点个关注。给我个三连击:点赞、转发和在看。若可以再给我加个⭐️,谢谢你看我的文章,我们下篇再见!

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值