YOLOv8+BoT-SORT多目标跟踪(行人车辆计数与越界识别)

课程链接:https://edu.csdn.net/course/detail/38919

BoT-SORT是发表于2022年的先进的多目标跟踪算法,它结合了运动和外观信息、相机运动补偿和更准确的卡尔曼滤波状态向量,并把这些改进集成到ByteTrack,从而在MOTA、IDF1和HOTA性能指标上超过了ByteTrack,增强了目标跟踪的鲁棒性,比较适用于存在相机运动的场景。

YOLOv8代码中已集成了BoT-SORT。本课程使用YOLOv8和BoT-SORT对视频中的行人、车辆做多目标跟踪计数与越界识别,开展YOLOv8目标检测和BoT-SORT多目标跟踪强强联手的应用。

课程分别在Windows和Ubuntu系统上做项目演示,并对BoT-SORT原理和代码做详细解读(使用PyCharm单步调试讲解)。

课程包括:基础篇、实践篇、原理篇和代码解析篇。

  基础篇包括多目标跟踪任务介绍、常用数据集和评估指标;

  实践篇包括Win10和Ubuntu系统上的YOLOv8+BoT-SORT的多目标跟踪计数与越界识别具体的实践操作步骤演示;

  原理篇中讲解了马氏距离、匈牙利算法、卡尔曼滤波器、SORT、DeepSORT和BoT-SORT多目标跟踪算法的原理,并解读了BoT-SORT论文;

  代码解析篇中使用PyCharm单步调试对BoT-SORT的代码逐个文件进行讲解。课程提供代码解析文档。

相关课程:

《YOLOv8+ByteTrack多目标跟踪(行人车辆计数与越界识别)》

https://edu.csdn.net/course/detail/38901

《YOLOv8+DeepSORT多目标跟踪(行人车辆计数与越界识别)》

https://edu.csdn.net/course/detail/38870

《YOLOv5+DeepSORT多目标跟踪与计数精讲》

https://edu.csdn.net/course/detail/32669

 

 

### 集成YOLOv8BoT-SORT进行目标跟踪 为了在YOLOv8中集成BoT-SORT以实现高效的目标跟踪,可以遵循以下技术方案: #### 1. 安装依赖库 确保安装了必要的Python包来支持YOLOv8BoT-SORT的功能。这通常涉及`ultralytics`用于YOLOv8以及特定于BoT-SORT的依赖项。 ```bash pip install ultralytics opencv-python numpy scipy lap cython filterpy ``` #### 2. 下载并配置模型权重文件 获取预训练好的YOLOv8权重文件,并准备好BoT-SORT所需的资源。可以从官方GitHub页面下载这些资源[^1]。 #### 3. 修改检测代码以便输出适合追踪的数据结构 调整YOLOv8推理部分的代码,使其能够提供给定帧中的边界框预测结果作为输入到BoT-SORT模块中去处理。具体来说就是修改后的函数应该返回每张图片上所有被识别物体的位置信息(即左上角坐标(x,y),宽度w,高度h),置信度分数以及类别标签等数据[^2]。 #### 4. 初始化BoT-SORT实例并YOLOv8连接起来 创建一个新的类或脚本来初始化BoT-SORT对象并将它链接至YOLOv8的结果处理器里边。这里的关键在于理解两者之间传递的信息格式是什么样的——一般情况下会是带有ID编号的一系列矩形区域描述符列表形式。 ```python from yolov8 import YOLOv8Detector from botsort.tracker import BoTSORTTracker detector = YOLOv8Detector(model_path='path/to/yolov8_weights') tracker = BoTSORTTracker() def process_frame(frame): detections = detector.detect(frame) tracked_objects = tracker.update(detections) for obj in tracked_objects: bbox = obj['bbox'] id_ = obj['id'] # 可视化或其他操作... ``` 通过上述方式可以在YOLOv8的基础上加入强大的多目标跟踪能力,从而更好地满足实际应用场景下的需求[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bai666ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值