一般来说,机器学习模型必须加入目标域的归纳偏差,以提高准确性和泛化性能。原子结构的NNs所具有的一些性质包括旋转不变性、平移不变性和镜像反转不变性。
其中,具有旋转不变性的称为SO(N),除SO(N)外具有平移不变性的称为SE(N),除SE(N)外具有镜像反转不变性的称为E(N)。当它们没有装备时,会产生物理上的非自然效应,例如非自然外力或推断光学异构体的不同能量。
一般来说,机器学习模型必须加入目标域的归纳偏差,以提高准确性和泛化性能。原子结构的NNs所具有的一些性质包括旋转不变性、平移不变性和镜像反转不变性。
其中,具有旋转不变性的称为SO(N),除SO(N)外具有平移不变性的称为SE(N),除SE(N)外具有镜像反转不变性的称为E(N)。当它们没有装备时,会产生物理上的非自然效应,例如非自然外力或推断光学异构体的不同能量。