SE(3)和se(3),左扰动模型

SE(3)与se(3):李群与李代数在机器人中的应用
本文介绍了SE(3)和se(3)在机器人学中的概念,SE(3)表示三维空间中的旋转和平移变换,而se(3)是其对应的李代数。通过矩阵表示和指数映射,解释了如何从se(3)的元素ξ生成SE(3)的变换矩阵T,并展示了左扰动模型下传感器测量如何受SE(3)变换影响。最后导出了关于ξ的偏导数,用于描述变换对扰动的敏感性。

1. SE(3)和se(3)

李群 S E ( 3 ) = { T = Δ [ R t 0 1 ] ∈ R 4 × 4 ∣ R ∈ R 3 × 3 , R R ⊤ = I , det ⁡ ( R ) = 1 , t ∈ R 3 } SE(3)=\{\mathbf{T} \stackrel{\Delta}{=}\begin{bmatrix} \mathbf{R} &\mathbf{t} \\ \mathbf{0} &1 \\ \end{bmatrix} \in R^{4 \times 4}| \mathbf{R} \in R^{3 \times 3}, \mathbf{R}\mathbf{R}^\top = \mathbf{I}, \det(\mathbf{R}) = 1, \mathbf{t} \in R^{3}\} SE(3)={T=Δ[R0t1]R4×4RR3×3,RR=I,det(R)=1,tR3}

李代数 s e ( 3 ) = { ξ = Δ [ r τ ] ∈ R 6 ∣ r ∈ R 3 , τ ∈ R 3 } se(3) = \{ \boldsymbol{\xi} \stackrel{\Delta}{=}\begin{bmatrix} \mathbf{r} \\ \boldsymbol{\tau} \\ \end{bmatrix} \in R^{6}| \mathbf{r} \in R^{3}, \boldsymbol{\tau} \in R^3 \} se(3)={ξ=Δ[rτ]R6rR3,τR3}

ξ ∧ = [ r ∧ τ 0 1 ] \boldsymbol{\xi}^{\wedge} = \begin{bmatrix} \mathbf{r}^{\wedge} &\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} ξ=[r0τ1]

ξ \boldsymbol{\xi} ξ T \mathbf{T} T:
T = exp ⁡ ( ξ ∧ ) = [ ∑ n = 0 ∞ 1 n ! ( r ∧ ) n ∑ n = 0 ∞ 1 ( n + 1 ) ! ( r ∧ ) n τ 0 1 ] = [ R J τ 0 1 ] \begin{aligned} \mathbf{T} &= \exp(\boldsymbol{\xi}^\wedge) \\ &= \begin{bmatrix} \displaystyle\sum_{n = 0}^{\infty} \frac{1}{n!}(\mathbf{\mathbf{r}^\wedge})^n &\displaystyle\sum_{n = 0}^{\infty} \frac{1}{(n+1)!}(\mathbf{\mathbf{r}^\wedge})^n \boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{R} &\mathbf{J}\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \end{aligned} T=exp(ξ)= n=0n!1(r)n0n=0(n+1)!1(r)nτ1 =[R0Jτ1]

J = sin ⁡ ( θ ) θ I + ( 1 − sin ⁡ ( θ ) θ ) a a ⊤ + 1 − cos ⁡ ( θ ) θ a ∧ \mathbf{J} = \frac{\sin(\theta)}{\theta} \mathbf{I} + \left(1- \frac{\sin(\theta)}{\theta} \right)\mathbf{a}\mathbf{a}^\top + \frac{1 - \cos(\theta)}{\theta}\mathbf{a}^{\wedge} J=θsin(θ)I+(1θsin(θ))aa+θ1cos(θ)a

θ = ∣ ∣ r ∣ ∣ , a = r θ \theta = ||\mathbf{r}||, \mathbf{a} = \frac{\mathbf{r}}{\theta} θ=∣∣r∣∣,a=θr

于是
t = J τ \mathbf{t} = \mathbf{J}\boldsymbol{\tau} t=Jτ

2. 左扰动模型

y = T [ x 1 ] = exp ⁡ ( ξ ∧ ) ⋅ [ x 1 ] = exp ⁡ ( ξ ∧ ) ⋅ x ~ \mathbf{y} = \mathbf{T} \begin{bmatrix} \mathbf{x} \\ 1 \\ \end{bmatrix} = \exp(\boldsymbol{\xi}^\wedge) \cdot \begin{bmatrix} \mathbf{x} \\ 1 \\ \end{bmatrix} = \exp(\boldsymbol{\xi}^\wedge) \cdot \tilde{\mathbf{x}} y=T[x1]=exp(ξ)[x1]=exp(ξ)x~

∂ y ∂ ξ = lim ⁡ Δ ξ → ∞ Δ y Δ ξ = lim ⁡ Δ ξ → ∞ exp ⁡ ( ( ξ + Δ ξ ) ∧ ) ⋅ x ~ − exp ⁡ ( ξ ∧ ) ⋅ x ~ Δ ξ = Δ lim ⁡ Δ ξ → ∞ exp ⁡ ( Δ ξ ∧ ) ⋅ exp ⁡ ( ξ ∧ ) ⋅ x ~ − exp ⁡ ( ξ ∧ ) ⋅ x ~ Δ ξ = lim ⁡ Δ ξ → ∞ ( I + Δ ξ ∧ ) ⋅ exp ⁡ ( ξ ∧ ) ⋅ x ~ − exp ⁡ ( ξ ∧ ) ⋅ x ~ Δ ξ = lim ⁡ Δ ξ → ∞ Δ ξ ∧ exp ⁡ ( ξ ∧ ) ⋅ x ~ Δ ξ = lim ⁡ Δ ξ → ∞ [ Δ r ∧ Δ τ 0 1 ] ⋅ [ R x + t 1 ] Δ ξ = lim ⁡ Δ ξ → ∞ [ Δ r ∧ ( R x + t ) + Δ τ 1 ] Δ ξ = [ − ( R x + t ) ∧ I 0 1 × 3 0 1 × 3 ] \begin{aligned} \frac{\partial \mathbf{y}}{\partial \boldsymbol{\xi}} &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\Delta \mathbf{y}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\exp((\boldsymbol{\xi} + \Delta \boldsymbol{\xi} )^\wedge) \cdot \tilde{\mathbf{x}} - \exp(\boldsymbol{\xi}^\wedge) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &\stackrel{\Delta}{=} \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\exp(\Delta {\boldsymbol{\xi}^{\wedge}}) \cdot \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}} - \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{(\mathbf{I} + \Delta \boldsymbol{\xi}^{\wedge}) \cdot \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}} - \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\Delta \boldsymbol{\xi}^{\wedge} \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\begin{bmatrix} \Delta\mathbf{r}^{\wedge} &\Delta\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R}\mathbf{x} + \mathbf{t} \\ 1 \\ \end{bmatrix}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\begin{bmatrix} \Delta\mathbf{r}^{\wedge} \left( \mathbf{R}\mathbf{x} + \mathbf{t} \right) + \Delta\boldsymbol{\tau} \\ 1 \\ \end{bmatrix}}{\Delta \boldsymbol{\xi}} \\ &= \begin{bmatrix} -\left( \mathbf{R}\mathbf{x} + \mathbf{t} \right)^\wedge &\mathbf{I} \\ \mathbf{0}_{1 \times 3} &\mathbf{0}_{1 \times 3} \\ \end{bmatrix} \end{aligned} ξy=ΔξlimΔξΔy=ΔξlimΔξexp((ξ+Δξ))x~exp(ξ)x~=ΔΔξlimΔξexp(Δξ)exp(ξ)x~exp(ξ)x~=ΔξlimΔξ(I+Δξ)exp(ξ)x~exp(ξ)x~=ΔξlimΔξΔξexp(ξ)x~=ΔξlimΔξ[Δr0Δτ1][Rx+t1]=ΔξlimΔξ[Δr(Rx+t)+Δτ1]=[(Rx+t)01×3I01×3]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值