1. SE(3)和se(3)
李群 SE(3)={T=Δ[Rt01]∈R4×4∣R∈R3×3,RR⊤=I,det(R)=1,t∈R3}SE(3)=\{\mathbf{T} \stackrel{\Delta}{=}\begin{bmatrix} \mathbf{R} &\mathbf{t} \\ \mathbf{0} &1 \\ \end{bmatrix} \in R^{4 \times 4}| \mathbf{R} \in R^{3 \times 3}, \mathbf{R}\mathbf{R}^\top = \mathbf{I}, \det(\mathbf{R}) = 1, \mathbf{t} \in R^{3}\}SE(3)={T=Δ[R0t1]∈R4×4∣R∈R3×3,RR⊤=I,det(R)=1,t∈R3}
李代数 se(3)={ξ=Δ[rτ]∈R6∣r∈R3,τ∈R3}se(3) = \{ \boldsymbol{\xi} \stackrel{\Delta}{=}\begin{bmatrix} \mathbf{r} \\ \boldsymbol{\tau} \\ \end{bmatrix} \in R^{6}| \mathbf{r} \in R^{3}, \boldsymbol{\tau} \in R^3 \}se(3)={ξ=Δ[rτ]∈R6∣r∈R3,τ∈R3}
ξ∧=[r∧τ01]\boldsymbol{\xi}^{\wedge} = \begin{bmatrix} \mathbf{r}^{\wedge} &\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix}ξ∧=[r∧0τ1]
从 ξ\boldsymbol{\xi}ξ 到 T\mathbf{T}T:
T=exp(ξ∧)=[∑n=0∞1n!(r∧)n∑n=0∞1(n+1)!(r∧)nτ01]=[RJτ01]\begin{aligned}
\mathbf{T} &= \exp(\boldsymbol{\xi}^\wedge) \\
&= \begin{bmatrix}
\displaystyle\sum_{n = 0}^{\infty} \frac{1}{n!}(\mathbf{\mathbf{r}^\wedge})^n &\displaystyle\sum_{n = 0}^{\infty} \frac{1}{(n+1)!}(\mathbf{\mathbf{r}^\wedge})^n \boldsymbol{\tau} \\
\mathbf{0} &1 \\
\end{bmatrix} \\
&= \begin{bmatrix}
\mathbf{R} &\mathbf{J}\boldsymbol{\tau} \\
\mathbf{0} &1 \\
\end{bmatrix}
\end{aligned}T=exp(ξ∧)=n=0∑∞n!1(r∧)n0n=0∑∞(n+1)!1(r∧)nτ1=[R0Jτ1]
J=sin(θ)θI+(1−sin(θ)θ)aa⊤+1−cos(θ)θa∧\mathbf{J} = \frac{\sin(\theta)}{\theta} \mathbf{I} + \left(1- \frac{\sin(\theta)}{\theta} \right)\mathbf{a}\mathbf{a}^\top + \frac{1 - \cos(\theta)}{\theta}\mathbf{a}^{\wedge}J=θsin(θ)I+(1−θsin(θ))aa⊤+θ1−cos(θ)a∧
θ=∣∣r∣∣,a=rθ\theta = ||\mathbf{r}||, \mathbf{a} = \frac{\mathbf{r}}{\theta}θ=∣∣r∣∣,a=θr
于是
t=Jτ\mathbf{t} = \mathbf{J}\boldsymbol{\tau}t=Jτ
2. 左扰动模型
y=T[x1]=exp(ξ∧)⋅[x1]=exp(ξ∧)⋅x~\mathbf{y} = \mathbf{T} \begin{bmatrix} \mathbf{x} \\ 1 \\ \end{bmatrix} = \exp(\boldsymbol{\xi}^\wedge) \cdot \begin{bmatrix} \mathbf{x} \\ 1 \\ \end{bmatrix} = \exp(\boldsymbol{\xi}^\wedge) \cdot \tilde{\mathbf{x}}y=T[x1]=exp(ξ∧)⋅[x1]=exp(ξ∧)⋅x~
∂y∂ξ=limΔξ→∞ΔyΔξ=limΔξ→∞exp((ξ+Δξ)∧)⋅x~−exp(ξ∧)⋅x~Δξ=ΔlimΔξ→∞exp(Δξ∧)⋅exp(ξ∧)⋅x~−exp(ξ∧)⋅x~Δξ=limΔξ→∞(I+Δξ∧)⋅exp(ξ∧)⋅x~−exp(ξ∧)⋅x~Δξ=limΔξ→∞Δξ∧exp(ξ∧)⋅x~Δξ=limΔξ→∞[Δr∧Δτ01]⋅[Rx+t1]Δξ=limΔξ→∞[Δr∧(Rx+t)+Δτ1]Δξ=[−(Rx+t)∧I01×301×3]\begin{aligned} \frac{\partial \mathbf{y}}{\partial \boldsymbol{\xi}} &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\Delta \mathbf{y}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\exp((\boldsymbol{\xi} + \Delta \boldsymbol{\xi} )^\wedge) \cdot \tilde{\mathbf{x}} - \exp(\boldsymbol{\xi}^\wedge) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &\stackrel{\Delta}{=} \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\exp(\Delta {\boldsymbol{\xi}^{\wedge}}) \cdot \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}} - \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{(\mathbf{I} + \Delta \boldsymbol{\xi}^{\wedge}) \cdot \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}} - \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\Delta \boldsymbol{\xi}^{\wedge} \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\begin{bmatrix} \Delta\mathbf{r}^{\wedge} &\Delta\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R}\mathbf{x} + \mathbf{t} \\ 1 \\ \end{bmatrix}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\begin{bmatrix} \Delta\mathbf{r}^{\wedge} \left( \mathbf{R}\mathbf{x} + \mathbf{t} \right) + \Delta\boldsymbol{\tau} \\ 1 \\ \end{bmatrix}}{\Delta \boldsymbol{\xi}} \\ &= \begin{bmatrix} -\left( \mathbf{R}\mathbf{x} + \mathbf{t} \right)^\wedge &\mathbf{I} \\ \mathbf{0}_{1 \times 3} &\mathbf{0}_{1 \times 3} \\ \end{bmatrix} \end{aligned}∂ξ∂y=Δξ→∞limΔξΔy=Δξ→∞limΔξexp((ξ+Δξ)∧)⋅x~−exp(ξ∧)⋅x~=ΔΔξ→∞limΔξexp(Δξ∧)⋅exp(ξ∧)⋅x~−exp(ξ∧)⋅x~=Δξ→∞limΔξ(I+Δξ∧)⋅exp(ξ∧)⋅x~−exp(ξ∧)⋅x~=Δξ→∞limΔξΔξ∧exp(ξ∧)⋅x~=Δξ→∞limΔξ[Δr∧0Δτ1]⋅[Rx+t1]=Δξ→∞limΔξ[Δr∧(Rx+t)+Δτ1]=[−(Rx+t)∧01×3I01×3]
本文介绍了SE(3)和se(3)在机器人学中的概念,SE(3)表示三维空间中的旋转和平移变换,而se(3)是其对应的李代数。通过矩阵表示和指数映射,解释了如何从se(3)的元素ξ生成SE(3)的变换矩阵T,并展示了左扰动模型下传感器测量如何受SE(3)变换影响。最后导出了关于ξ的偏导数,用于描述变换对扰动的敏感性。
1万+

被折叠的 条评论
为什么被折叠?



