1. SE(3)和se(3)
李群 S E ( 3 ) = { T = Δ [ R t 0 1 ] ∈ R 4 × 4 ∣ R ∈ R 3 × 3 , R R ⊤ = I , det ( R ) = 1 , t ∈ R 3 } SE(3)=\{\mathbf{T} \stackrel{\Delta}{=}\begin{bmatrix} \mathbf{R} &\mathbf{t} \\ \mathbf{0} &1 \\ \end{bmatrix} \in R^{4 \times 4}| \mathbf{R} \in R^{3 \times 3}, \mathbf{R}\mathbf{R}^\top = \mathbf{I}, \det(\mathbf{R}) = 1, \mathbf{t} \in R^{3}\} SE(3)={T=Δ[R0t1]∈R4×4∣R∈R3×3,RR⊤=I,det(R)=1,t∈R3}
李代数 s e ( 3 ) = { ξ = Δ [ r τ ] ∈ R 6 ∣ r ∈ R 3 , τ ∈ R 3 } se(3) = \{ \boldsymbol{\xi} \stackrel{\Delta}{=}\begin{bmatrix} \mathbf{r} \\ \boldsymbol{\tau} \\ \end{bmatrix} \in R^{6}| \mathbf{r} \in R^{3}, \boldsymbol{\tau} \in R^3 \} se(3)={ξ=Δ[rτ]∈R6∣r∈R3,τ∈R3}
ξ ∧ = [ r ∧ τ 0 1 ] \boldsymbol{\xi}^{\wedge} = \begin{bmatrix} \mathbf{r}^{\wedge} &\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} ξ∧=[r∧0τ1]
从
ξ
\boldsymbol{\xi}
ξ 到
T
\mathbf{T}
T:
T
=
exp
(
ξ
∧
)
=
[
∑
n
=
0
∞
1
n
!
(
r
∧
)
n
∑
n
=
0
∞
1
(
n
+
1
)
!
(
r
∧
)
n
τ
0
1
]
=
[
R
J
τ
0
1
]
\begin{aligned} \mathbf{T} &= \exp(\boldsymbol{\xi}^\wedge) \\ &= \begin{bmatrix} \displaystyle\sum_{n = 0}^{\infty} \frac{1}{n!}(\mathbf{\mathbf{r}^\wedge})^n &\displaystyle\sum_{n = 0}^{\infty} \frac{1}{(n+1)!}(\mathbf{\mathbf{r}^\wedge})^n \boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{R} &\mathbf{J}\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \end{aligned}
T=exp(ξ∧)=
n=0∑∞n!1(r∧)n0n=0∑∞(n+1)!1(r∧)nτ1
=[R0Jτ1]
J = sin ( θ ) θ I + ( 1 − sin ( θ ) θ ) a a ⊤ + 1 − cos ( θ ) θ a ∧ \mathbf{J} = \frac{\sin(\theta)}{\theta} \mathbf{I} + \left(1- \frac{\sin(\theta)}{\theta} \right)\mathbf{a}\mathbf{a}^\top + \frac{1 - \cos(\theta)}{\theta}\mathbf{a}^{\wedge} J=θsin(θ)I+(1−θsin(θ))aa⊤+θ1−cos(θ)a∧
θ = ∣ ∣ r ∣ ∣ , a = r θ \theta = ||\mathbf{r}||, \mathbf{a} = \frac{\mathbf{r}}{\theta} θ=∣∣r∣∣,a=θr
于是
t
=
J
τ
\mathbf{t} = \mathbf{J}\boldsymbol{\tau}
t=Jτ
2. 左扰动模型
y = T [ x 1 ] = exp ( ξ ∧ ) ⋅ [ x 1 ] = exp ( ξ ∧ ) ⋅ x ~ \mathbf{y} = \mathbf{T} \begin{bmatrix} \mathbf{x} \\ 1 \\ \end{bmatrix} = \exp(\boldsymbol{\xi}^\wedge) \cdot \begin{bmatrix} \mathbf{x} \\ 1 \\ \end{bmatrix} = \exp(\boldsymbol{\xi}^\wedge) \cdot \tilde{\mathbf{x}} y=T[x1]=exp(ξ∧)⋅[x1]=exp(ξ∧)⋅x~
∂ y ∂ ξ = lim Δ ξ → ∞ Δ y Δ ξ = lim Δ ξ → ∞ exp ( ( ξ + Δ ξ ) ∧ ) ⋅ x ~ − exp ( ξ ∧ ) ⋅ x ~ Δ ξ = Δ lim Δ ξ → ∞ exp ( Δ ξ ∧ ) ⋅ exp ( ξ ∧ ) ⋅ x ~ − exp ( ξ ∧ ) ⋅ x ~ Δ ξ = lim Δ ξ → ∞ ( I + Δ ξ ∧ ) ⋅ exp ( ξ ∧ ) ⋅ x ~ − exp ( ξ ∧ ) ⋅ x ~ Δ ξ = lim Δ ξ → ∞ Δ ξ ∧ exp ( ξ ∧ ) ⋅ x ~ Δ ξ = lim Δ ξ → ∞ [ Δ r ∧ Δ τ 0 1 ] ⋅ [ R x + t 1 ] Δ ξ = lim Δ ξ → ∞ [ Δ r ∧ ( R x + t ) + Δ τ 1 ] Δ ξ = [ − ( R x + t ) ∧ I 0 1 × 3 0 1 × 3 ] \begin{aligned} \frac{\partial \mathbf{y}}{\partial \boldsymbol{\xi}} &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\Delta \mathbf{y}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\exp((\boldsymbol{\xi} + \Delta \boldsymbol{\xi} )^\wedge) \cdot \tilde{\mathbf{x}} - \exp(\boldsymbol{\xi}^\wedge) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &\stackrel{\Delta}{=} \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\exp(\Delta {\boldsymbol{\xi}^{\wedge}}) \cdot \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}} - \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{(\mathbf{I} + \Delta \boldsymbol{\xi}^{\wedge}) \cdot \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}} - \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\Delta \boldsymbol{\xi}^{\wedge} \exp({\boldsymbol{\xi}^{\wedge}}) \cdot \tilde{\mathbf{x}}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\begin{bmatrix} \Delta\mathbf{r}^{\wedge} &\Delta\boldsymbol{\tau} \\ \mathbf{0} &1 \\ \end{bmatrix} \cdot \begin{bmatrix} \mathbf{R}\mathbf{x} + \mathbf{t} \\ 1 \\ \end{bmatrix}}{\Delta \boldsymbol{\xi}} \\ &= \lim_{\Delta \boldsymbol{\xi} \to \infty} \frac{\begin{bmatrix} \Delta\mathbf{r}^{\wedge} \left( \mathbf{R}\mathbf{x} + \mathbf{t} \right) + \Delta\boldsymbol{\tau} \\ 1 \\ \end{bmatrix}}{\Delta \boldsymbol{\xi}} \\ &= \begin{bmatrix} -\left( \mathbf{R}\mathbf{x} + \mathbf{t} \right)^\wedge &\mathbf{I} \\ \mathbf{0}_{1 \times 3} &\mathbf{0}_{1 \times 3} \\ \end{bmatrix} \end{aligned} ∂ξ∂y=Δξ→∞limΔξΔy=Δξ→∞limΔξexp((ξ+Δξ)∧)⋅x~−exp(ξ∧)⋅x~=ΔΔξ→∞limΔξexp(Δξ∧)⋅exp(ξ∧)⋅x~−exp(ξ∧)⋅x~=Δξ→∞limΔξ(I+Δξ∧)⋅exp(ξ∧)⋅x~−exp(ξ∧)⋅x~=Δξ→∞limΔξΔξ∧exp(ξ∧)⋅x~=Δξ→∞limΔξ[Δr∧0Δτ1]⋅[Rx+t1]=Δξ→∞limΔξ[Δr∧(Rx+t)+Δτ1]=[−(Rx+t)∧01×3I01×3]
SE(3)与se(3):李群与李代数在机器人中的应用
本文介绍了SE(3)和se(3)在机器人学中的概念,SE(3)表示三维空间中的旋转和平移变换,而se(3)是其对应的李代数。通过矩阵表示和指数映射,解释了如何从se(3)的元素ξ生成SE(3)的变换矩阵T,并展示了左扰动模型下传感器测量如何受SE(3)变换影响。最后导出了关于ξ的偏导数,用于描述变换对扰动的敏感性。
1万+

被折叠的 条评论
为什么被折叠?



