国内首家,百度地图核心 API 全面兼容 MCP 协议

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

目前,百度地图已经完成了8个核心API接口和MCP协议的对接, 涵盖逆地理编码、地点检索、路线规划等。作为国内首家支持MCP协议的地图服务商,百度地图MCP Server发布后,开发者仅需简单配置,就可以在大模型中快速接入地图服务,实现查找周边地点、规划出行路线等能力,大幅降低了智能体应用开发过程中调用地图服务相关能力的门槛,显著提升了智能体应用的开发效率。

MCP协议是什么?

随着Agent应用的迅速推广,开发者在工具开发以及接入环节普遍遭遇一系列难题:工具开发缺少统一规范,导致开发效率不高;反复适配各类不同平台,使得开发成本上升且耗时增加;开源社区里的组件质量良莠不齐,对高质量工具进行整合与维护常常要耗费大量时间精力。MCP协议正是在这一背景下应运而生,为行业带来了新的解决思路和价值。

MCP(Model Context Protocol)协议是由Anthropic推出的业界领先的开放标准,旨在构建大模型与数据源之间的安全双向链接,解决了社区中工具实现风格不统一、难以跨模型共享的问题。

百度地图MCP Server的核心价值

在这里插入图片描述

  • 更快捷的工具开发与服务集成:支持开发者使用百度地图MCP Server,快速实现地图智能体应用的开发;一次接入,即可使您的智能体应用具备识别地图场景的能力,为用户提供实时出行规划、地点问询、天气查询等功能,相比传统的API调用极大简化了智能体开发流程。
  • 丰富的场景应用与行业方案: 开发者在智能体应用的开发过程中,可轻松通过百度地图MCP Server调起地图能力,满足用户在各类出行场景中的需求。在旅游、智能穿戴、物流等行业中,能快速构建智能体应用,帮助开发者准确识别地图场景需求、调起地图工具。

百度地图MCP Server功能列表

在这里插入图片描述

实操案例1

目标

使用Claude集成百度地图MCP Server,构建一个旅游行程规划小助手。

步骤

  1. 打开Claude的Setting菜单,切换到Developer选项卡,点击"Edit Config",用任意的文本编辑器软件打开配置文件。

    在这里插入图片描述
  2. 将以下配置添加到配置文件中,BAIDU_MAP_API_KEY 是访问百度地图开放平台API的AK,可根据此页面申请获取:https://lbs.baidu.com/faq/search?id=299&title=677
    在这里插入图片描述
{
    "mcpServers": {
        "baidu-map": {
            "command": "npx",
            "args": [
                "-y",
                "@baidumap/mcp-server-baidu-map"
            ],
            "env": {
                "BAIDU_MAP_API_KEY": "xxx"
            }
        }
    }
}
  1. 重启Claude,此时设置面板已经成功加载了百度地图MCP Server。在软件主界面对话框处可以看到有8个可用的MCP工具,点击可以查看详情。

在这里插入图片描述
在这里插入图片描述
4. 接下来就可以进行提问,验证行程规划小助手的能力了。

效果展示

在这里插入图片描述

除了Claude等平台,百度智能云千帆AppBuilder也已经全面兼容了MCP协议。

开发者可以通过千帆AppBuilder,让应用轻松调用地图服务,通过下面这个案例我们一起来看看吧!

实操案例2

百度智能云千帆 AppBuilder 是企业级大模型应用开发平台,预置了 RAG、Agent、工作流等大模型应用开发工具链,在能源、制造、教育、企业服务等行业加速企业级大模型应用落地,提效大模型应用落地最后一公里。

千帆AppBuilder目前同样兼容了MCP协议,是国内首家兼容该协议的大模型应用开发平台,支持MCP Server通过SDK或API接入。

例如在下面这个案例中,用户可以通过千帆AppBuilder构建一个“地图导航”大模型应用,调用百度地图 Python MCP Tool,即可在千帆AppBuilder中体验百度地图能力。

可参考下方模板代码,通过SDK Agent & 地图 MCP Server,即可获得导航路线、路线信息与出行建议。

更多信息,欢迎查阅:https://cloud.baidu.com/doc/AppBuilder/s/Um88v68dn

Agent配置

通过千帆AppBuilder构建大模型应用,在“模型配置”中,将Agent的“最大思考次数”调整到6轮,然后发布应用。同时,千帆AppBuilder也接入了DeepSeek模型,也可以实现通过DeepSeek模型接入百度地图的地图MCP Server,提升应用问答效果。
在这里插入图片描述

调用

千帆AppBuilder上的应用拥有一个独立的app_id,在python文件中调用对应的app_id,即可调用百度地图 Python MCP Tool。

此代码可以当作模板,以SDK的形式调用千帆AppBuilder上已经构建好且已发布的应用,再将MCP Server下载至本地,将文件相对路径写入代码即可。

(注意:使用实际的app_id、token、query、mcp文件)

import os
import asyncio

import appbuilder
from appbuilder.core.console.appbuilder_client.async_event_handler import (
    AsyncAppBuilderEventHandler,
)

from appbuilder.modelcontextprotocol.client import MCPClient


class MyEventHandler(AsyncAppBuilderEventHandler):
    def __init__(self, mcp_client):
        super().__init__()
        self.mcp_client = mcp_client

    def get_current_weather(self, location=None, unit="摄氏度"):
        return "{} 的温度是 {} {}".format(location, 20, unit)

    async def interrupt(self, run_context, run_response):
        thought = run_context.current_thought
        # 绿色打印
        print("\033[1;31m", "-> Agent 中间思考: ", thought, "\033[0m")

        tool_output = []
        for tool_call in run_context.current_tool_calls:
            tool_res = ""
            if tool_call.function.name == "get_current_weather":
                tool_res = self.get_current_weather(**tool_call.function.arguments)
            else:
                print(
                    "\033[1;32m",
                    "MCP工具名称: {}, MCP参数:{}\n".format(tool_call.function.name, tool_call.function.arguments),
                    "\033[0m",
                )
                mcp_server_result = await self.mcp_client.call_tool(
                    tool_call.function.name, tool_call.function.arguments
                )
                print("\033[1;33m", "MCP结果: {}\n\033[0m".format(mcp_server_result))
                for i, content in enumerate(mcp_server_result.content):
                    if content.type == "text":
                        tool_res += mcp_server_result.content[i].text
            tool_output.append(
                {
                    "tool_call_id": tool_call.id,
                    "output": tool_res,
                }
            )
        return tool_output

    async def success(self, run_context, run_response):
        print("\n\033[1;34m", "-> Agent 非流式回答: ", run_response.answer, "\033[0m")

async def agent_run(client, mcp_client, query):
    tools = mcp_client.tools

    conversation_id = await client.create_conversation()
    with await client.run_with_handler(
        conversation_id=conversation_id,
        query=query,
        tools=tools,
        event_handler=MyEventHandler(mcp_client),
    ) as run:
        await run.until_done()

### 用户Token
os.environ["APPBUILDER_TOKEN"] = (
    ""
)

async def main():
    appbuilder.logger.setLoglevel("DEBUG")
    ### 发布的应用ID
    app_id = ""
    appbuilder_client = appbuilder.AsyncAppBuilderClient(app_id)
    mcp_client = MCPClient()
    
    ### 注意这里的路径为MCP Server文件在本地的相对路径
    await mcp_client.connect_to_server("./<YOUR_FILE_PATH>/map.py")
    print(mcp_client.tools)

    await agent_run(
        appbuilder_client,
        mcp_client,
        '开车导航从北京到上海',
    )

    await appbuilder_client.http_client.session.close()


if __name__ == "__main__":
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

效果展示

Agent自主进行思考,通过调用MCP Server 地点检索、地理编码服务、路线规划服务等多个tool,拿到导航路线及路线信息,并给出出行建议。

实际用户请求:“请为我计划一次北京赏花一日游。尽量给出更舒适的出行安排,当然,也要注意天气状况。”

思考过程展示
在这里插入图片描述

Agent结果展示
在这里插入图片描述

百度地图MCP Server开发文档已经上线,欢迎您访问百度地图开放平台官网(https://lbs.baidu.com/faq/api?title=mcpserver/base),了解详情。

未来,百度地图将持续加大对MCP协议的支持,推动更多地图服务接口兼容MCP协议,繁荣MCP生态,为行业提供更加高效、智能的地图服务,不断赋能开发者创新。

### 关于MCP协议的授权机制 MCP(Machine Communication Protocol)的核心在于资源暴露[^1],这使得它能够在多种应用场景下实现高效的数据交互和隐私保护。然而,在讨论MCP协议的具体授权机制之前,有必要理解其背景和技术特点。 #### MCP协议的应用范围 MCP协议已经被广泛应用在多个领域,包括但不限于机器学习、联邦学习、数据挖掘、拍卖、基因组分析、数据库安全以及区块链等领域[^3]。这些应用表明MCP不仅能够支持复杂的计算任务,还具备强大的隐私保护功能。 #### 授权机制概述 虽然具体的MCP协议官方文档未被直接提及,但从类似的通信协议设计来看,MCP可能采用了类似于OAuth 2.0的安全架构来管理访问权限。例如,在OAuth 2.0中,“授权码模式”是一种高安全性的方式,允许第三方应用程序通过用户确认后的授权码获取令牌,而不是直接处理用户的敏感信息[^4]。这种设计理念很可能也被融入到了MCP协议的设计之中。 #### 可能的授权流程 基于已知的信息和其他高级协议的特点,推测MCP协议中的授权过程可能会遵循以下原则: 1. **身份验证**:参与方需经过严格的身份验证以确保合法性。 2. **动态协商**:利用智能体之间的共识协议或个性化协议完成具体任务的需求匹配[^2]。 3. **临时凭证发放**:类似于OAuth 2.0中的授权码概念,仅授予有限时间内的访问权。 4. **细粒度控制**:针对不同类型的资源设定差异化的访问策略。 以下是模拟的一个简单伪代码片段展示如何实施上述部分逻辑: ```python def mcp_authorization(user, resource_id): # Step 1: Verify user identity if not verify_identity(user): raise Exception("Unauthorized access attempt.") # Step 2: Negotiate terms via consensus or custom protocols negotiation_result = negotiate_terms(user, resource_id) if not negotiation_result.success: return {"status": "denied", "reason": negotiation_result.reason} # Step 3: Issue temporary credentials temp_token = generate_temporary_credentials(negotiation_result.details) return { "status": "approved", "token": temp_token, "expires_in": TEMP_TOKEN_LIFETIME_SECONDS } ``` 尽管以上仅为假设性的描述,但它反映了现代分布式系统普遍采用的最佳实践之一。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值