https://blog.csdn.net/u011462357/article/details/78377411
-
Name Brand Cloth Count
-
girl uniql sweater 3
-
girl etam suit 1
-
girl etam pants 1
-
girl lagogo jacket 2
-
boy pants 2
-
boy hailan t-shirt 1
-
mother hengyuanxiang coat 2
-
mother hengyuanxiang sweater 1
-
mother coat 1
-
father hailan t-shirt 2
-
father hailan sweater 1
-
father hailan pants 3
本文数据源如上,Name:在家庭中的身份, Brand:衣服品牌, ClothType:衣服数量,Count:衣服数量
import pandas as pd data=pd.read_excel('testdata.xlsx')
如果是csv文件:
import pandas as pd data=pd.read_csv('testdata.csv',sep=',')
查看data的内容:
-
data
-
Out[1]:
-
Name Brand Cloth Count
-
0 girl uniql sweater 3
-
1 girl etam suit 1
-
2 girl etam pants 1
-
3 girl lagogo jacket 2
-
4 boy NaN pants 2
-
5 boy hailan t-shirt 1
-
6 mother hengyuanxiang coat 2
-
7 mother hengyuanxiang sweater 1
-
8 mother NaN coat 1
-
9 father hailan t-shirt 2
-
10 father hailan sweater 1
-
11 father hailan pants 3
获取列名:
-
data.columns
-
Out[2]: Index(['Name', 'Brand', 'Cloth', 'Count'], dtype='object')
-
data.columns[0]
-
Out[2]: 'Name'
-
data.columns[1]
-
Out[3]: 'Brand'
获取index:
-
data.index
-
Out[3]: RangeIndex(start=0, stop=12, step=1)
从0开始,到12停,不包括12.所以一共有12行数据
获取values:
-
data.values
-
Out[4]:
-
array([['girl', 'uniql', 'sweater', 3],
-
['girl', 'etam', 'suit', 1],
-
['girl', 'etam', 'pants', 1],
-
['girl', 'lagogo', 'jacket', 2],
-
['boy', nan, 'pants', 2],
-
['boy', 'hailan', 't-shirt', 1],
-
['mother', 'hengyuanxiang', 'coat', 2],
-
['mother', 'hengyuanxiang', 'sweater', 1],
-
['mother', nan, 'coat', 1],
-
['father', 'hailan', 't-shirt', 2],
-
['father', 'hailan', 'sweater', 1],
-
['father', 'hailan', 'pants', 3]], dtype=object)
获取某一行:
-
data.values[1]
-
Out[5]: array(['girl', 'etam', 'suit', 1], dtype=object)
获取某一格:
-
data.values[1][2]
-
Out[6]: 'suit'
按某一列关键字分组:
-
gp=data.groupby('Brand')#写data.groupby(data['Brand'])也是一样的
-
gp
-
Out[10]: <pandas.core.groupby.DataFrameGroupBy object at 0x0000000008309B38>
-
type(gp)
-
Out[11]: pandas.core.groupby.DataFrameGroupBy
gp是一个把dataframe groupby以后的对象,它实际上还没有进行任何计算,只是一个暂时存储的容器。
对这个暂时存储的容器进行计数,因为是按'Brand'分的组,:
-
gp.count()
-
Out[13]:
-
Name Cloth Count
-
Brand
-
etam 2 2 2
-
hailan 4 4 4
-
hengyuanxiang 2 2 2
-
lagogo 1 1 1
-
uniql 1 1 1
看到按'Brand'分组后的这个结果,Name,Cloth,Count列在每种Brand所对应行的数字都一样,比如:2 2 2.可以理解为每种Brand各有多少行数据,把这个行数显示在所有列。
因为我们选择时是data.groupby(),而不是data['Count'].groupby()
p.s.:可以看到分组计数后的index是'Brand‘,这是因为分组是按'Brand’字段分的
-
gp.count().index
-
Out[14]: Index(['etam', 'hailan', 'hengyuanxiang', 'lagogo', 'uniql'], dtype='object', name='Brand')
想知道每种Brand的衣服有多少人穿多少种,其实只看 Count列就行了。
比如father虽然有2件T-shirt,1件sweater,3件pants,还是算1个人穿3种hailan。boy有一件hailan的t-shirt,算1个人穿1种hailan。所以hailan对应4。 总之,count()函数可以理解为对Count列去重的和。
-
gp1=data['Count'].groupby(data['Brand'])
-
gp1.count() #和gp1.size()结果一样
-
Out[20]:
-
Brand
-
etam 2
-
hailan 4
-
hengyuanxiang 2
-
lagogo 1
-
uniql 1
-
Name: Count, dtype: int64
想求某品牌被人均拥有的件数的平均值:
比如hailan就是father的2件T恤,1件毛衣,3条裤子,还有boy的1件T恤。 (2+1+3+1)/4=1.75。 分母4可以理解为刚才所说的 gp1.count() :每种Brand的衣服有多少人穿多少种
比如hengyuanxiang就是mother的2件大衣,1件毛衣 ,(2+1)/2=1.5
-
gp1.mean()
-
Out[21]:
-
Brand
-
etam 1.00
-
hailan 1.75
-
hengyuanxiang 1.50
-
lagogo 2.00
-
uniql 3.00
-
Name: Count, dtype: float64
说明:type(gp1.mean()) 是 Series类型。之所以index叫'Brand',是因为原datafram是按'Brand' groupby的
想求某品牌被每人拥有的件数:(与“”想知道每种Brand的衣服有多少人穿多少种“ .count( )算法的区别在于 不去重)
在Count列上加和
-
gp1.agg(sum) #就是 data['Count'].groupby(data['Brand']).agg(sum) , agg里也可以写'sum',与不加单引号等效
-
Out[5]:
-
Brand
-
etam 2
-
hailan 7
-
hengyuanxiang 3
-
lagogo 2
-
uniql 3
-
Name: Count, dtype: int64
综上所述可以观察出,gp1.mean()操作的结果等于 gp1.agg(sum)/gp1.count()
遍历分组:
-
for name,group in data.groupby(data['Brand']):
-
print(name)
-
print(group)
-
etam
-
Name Brand Cloth Count
-
1 girl etam suit 1
-
2 girl etam pants 1
-
hailan
-
Name Brand Cloth Count
-
5 boy hailan t-shirt 1
-
9 father hailan t-shirt 2
-
10 father hailan sweater 1
-
11 father hailan pants 3
-
hengyuanxiang
-
Name Brand Cloth Count
-
6 mother hengyuanxiang coat 2
-
7 mother hengyuanxiang sweater 1
-
lagogo
-
Name Brand Cloth Count
-
3 girl lagogo jacket 2
-
uniql
-
Name Brand Cloth Count
-
0 girl uniql sweater 3
由上可以看出,brand为NaN 的衣服并没有被分组,自动忽略不计了。
对于由DataFrame产生的GroupBy对象,如果用一个(单个字符串)或一组(字符串数组)列名对其进行索引,就能实现选取部分列进行聚合的目的,即:
写法一:
-
data.groupby('Brand')['Count'].sum()#等价于data.groupby('Brand')['Count'].agg(sum),等价于data.groupby('Brand')['Count'].agg('sum')#等价于data.groupby('Brand').agg('sum')['Count'],等价于data.groupby('Brand').agg(sum)['Count'],等价于data.groupby('Brand').sum()['Count']
-
Out[13]:
-
Brand
-
etam 2
-
hailan 7
-
hengyuanxiang 3
-
lagogo 2
-
uniql 3
-
Name: Count, dtype: int64
这和写法二:
-
data['Count'].groupby(data['Brand']).sum()
-
Out[19]:
-
Brand
-
etam 2
-
hailan 7
-
hengyuanxiang 3
-
lagogo 2
-
uniql 3
-
Name: Count, dtype: int64
是等效的
注意写法一里面的'Brand'不用必须写成(当然也可以写成)data['Brand'],是因为data.groupby()由于是对data这个dataframe调用的方法,所以能识别出data的字段'Brand'。但是写法二是对data['Count'] 这个Series对象调用的groupby,不认识'Brand',只认识data['Brand'],如果写法二还写成.groupby('Brand')就会报错。
双索引分组:
想知道每人拥有每种品牌的衣服多少种类型(类型就是Cloth字段,写成ClothType大家更容易理解哈):
-
data.groupby(['Name','Brand'])['Count'].count() #和写.size( )效果一样
-
Out[31]:
-
Name Brand
-
boy hailan 1
-
father hailan 3
-
girl etam 2
-
lagogo 1
-
uniql 1
-
mother hengyuanxiang 2
-
Name: Count, dtype: int64
从结果可以看出,对boy拥有的没Brand的一条裤子,和mother没牌子的一件大衣,都自动忽略不计了。
最后,感谢http://blog.csdn.net/leonis_v/article/details/51832916的分享