Deep Watershed Transform for Instance Segmentation

cvpr17的一篇文章, 作者:Min Bai; Raquel Urtasun
https://arxiv.org/pdf/1611.08303.pdf
之前效果较好的 Instance segmentation主要是使用proposal的方式,比如FCIS或者Mask rcnn,本文提出了骨骼清奇的深度分水岭的方法。

1. Watershed Transform

首先来说一下传统的分水岭算法:
我们按照图片的灰度值的梯度可以绘制一个“地形图”, 然后将在各个局部极小值的地方开始灌水,为防止不同区域内的水相通,变建立“大坝”将其分各开,也就将图分割为独立的几个区域。如下图:
这里写图片描述 这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值