Deep Watershed Transform for Instance Segmentation

cvpr17的一篇文章, 作者:Min Bai; Raquel Urtasun
https://arxiv.org/pdf/1611.08303.pdf
之前效果较好的 Instance segmentation主要是使用proposal的方式,比如FCIS或者Mask rcnn,本文提出了骨骼清奇的深度分水岭的方法。

1. Watershed Transform

首先来说一下传统的分水岭算法:
我们按照图片的灰度值的梯度可以绘制一个“地形图”, 然后将在各个局部极小值的地方开始灌水,为防止不同区域内的水相通,变建立“大坝”将其分各开,也就将图分割为独立的几个区域。如下图:
这里写图片描述 这里写图片描述

As an AI language model, I can suggest some possible steps for automatic tooth instance segmentation and identification from cone beam CT images: 1. Pre-processing: The first step is to pre-process the CBCT images to remove noise, artifacts, and other image distortions. This can be achieved through various image processing techniques, such as filtering, thresholding, and morphological operations. 2. Tooth segmentation: The next step is to segment the individual teeth from the CBCT images. This can be done using various segmentation algorithms, such as region-growing, active contours, and watershed-based techniques. The segmentation can be further refined by incorporating shape and texture information. 3. Tooth instance identification: Once the individual teeth are segmented, the next step is to identify the specific tooth instance (e.g., mandibular left central incisor). This can be done using various methods, such as template matching, feature extraction, and machine learning-based approaches. 4. Post-processing: Finally, the segmented teeth and identified instances can be post-processed to remove any remaining artifacts or noise. This can be achieved through various techniques, such as smoothing, filtering, and morphological operations. Overall, automatic tooth instance segmentation and identification from CBCT images is a challenging task that requires the integration of various image processing, computer vision, and machine learning techniques. However, with recent advancements in AI and deep learning, there is great potential for developing accurate and reliable automated systems for dental image analysis.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值