用尽量少的语言描述一篇paper
本文看点:
结合embedding和Segmentation mask提供一种做Lane Instance Segmentation的思路
Lane的Instance Segmentation可以比单纯的Segmentation适应更多样的路面情况,本文在Segmentation Mask的基础上增加了embedding分支,用以使得每条lane中的像素embedding结果更加接近,有了lane的segmentation mask和其中像素的embedding就可以利用聚类的方法将mask 根据阈值切分为几条单独的lane。
网络思路如下:
embedding的学习还是通过类似于contrastive loss的方法,将同类拉近,异类拉远。
另外,文章中根据图像来学习lane的拟合参数,数据驱动的学习使得系统对于上下坡的场景适应性更强