阅读笔记——AnatomyNet

概述

这是阅读一篇医学分割方向的论文《AnatomyNet:Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck Anatomy》的小笔记。

对于头部和脖子位置的癌症,放射疗法是一种常见治疗方案。为了达到对病变区域精准放射的效果,需要医生在 CT 图中标记出病变区域。这一过程耗时长且容易出错。而现有的一些自动处理方法,则是一些比较初级的基于地图的自动查询方法,对地图集要求高且泛化性能差。

针对这一对病变区域进行自动化分割的问题,作者提出了 AnatomyNet 方法。提出的 AnatomyNet 模型基于 3D Unet 结构,并且做了三点大的改进:

  1. 设计了一种新的编码方式,可以直接对整个 CT 图像进行分割,而不是需要切片进行分割;
  2. 使用 3D SE 残差模块,更好地进行特征提取;
  3. 设计了一种结合 Dice score 和 focal loss 的新损失。

而这些设计都是为了解决对小目标的分割和训练数据标注不一致的问题而提出。

最终通过直接输入 3D 的 CT 扫描图像,网络对 9 个部位进行分割:脑干、视交叉、下颌骨、左视神经、右视神经、左腮腺、右腮腺、左下颌下腺、右下颌下腺,直接输出二值化的分割结果图。

方法

为了达到端到端进行分割的效果,有一些问题需要解决:

  1. 由于网络输入是整张 3D 图像,这限制了网络特征图大小和数目;
  2. OARs(organs-at-risks) 有不同的大小,其中有些区域面积还很小,对这些小目标的分割本身就很难;
  3. 现有的数据集标注不统一,存在标注遗漏的情况,如果高效处理这些遗漏的标注也是一个问题。

针对这些问题,作者提出了对应的解决方法。首先是基于 SE(squeeze-and-excitation)模块,扩展标准的 U-Net 模型为可以输入 3D HaN(head and neck)CT 图像;另外提出了一个新的损失函数,更好地对小目标进行分割;最终针对数据标注不统一的问题,使用损失 mask 和针对类别进行加权方法,降低不同标注标准对模型性能的影响。

当前也存在一些处理样本数量不均衡的训练损失设计方法,但是实验发现没有一种损失在这种极致的数据比例( 1 / 100 , 000 1/100,000 1/100,000)情况下得到了好的小目标分割结果,因此组合 Dice score 和 focal loss,提出了一个新的损失。

数据集

实验使用的数据集来自 4 个公开开源数据集,包括:

  1. DATASET 1 (38 samples) consists of the training set from the MICCAI Head and Neck Auto Segmentation Challenge 2015;
  2. DATASET 2 (46 samples) consists of CT images from the Head-Neck Cetuximab collection, downloaded from The Cancer Imaging Archive (TCIA);
  3. DATASET 3 (177 samples) consists of CT images from four different institutions in Qu´ebec, Canada
    also downloaded from TCIA;
  4. DATATSET 4 (10 samples) consists of the test set from the MICCAI https://wiki.cancerimagingarchive.net/ HaN Segmentation Challenge 2015。

使用其中前三个数据集作为训练集,最后一个数据集作为测试集。

而在数据集预处理方面:包括标签格式转换、标签生成、移除胸部区域,裁剪只保留头部和脖子区域等步骤。

网络架构

在原始 U-Net 中包含多个下采样结构,尽管那些下采样有利于学习高层特征,对于分割复杂目标或者大目标有帮助,但是可能会损失小区域分割的性能。因此 AnatomyNet 只使用了一个下采样,而且这个下采样还在第一个 encoding block 中使用,使得降低 GPU 显存需求。

同时还提出了适用于 3D 输入的 SE 结构,如下式所示。相比原始 SE 模块在一个 2D 特征图上进行全局平均池化,这里需要在 3D 特征图上进行这一操作。
在这里插入图片描述
总体网络结构如下图所示。网络中只将输入图像降低到原始的 1 2 \frac 12 21 大小。
在这里插入图片描述

损失函数

在损失函数方面,为了更好地适应极端的数据不平衡分布,作者提出了结合 Dics loss 和 focal loss,同时 focal loss 的加入也提升了 Dice loss 训练的稳定性。损失如下式所示:
在这里插入图片描述

处理遗漏标注

实验使用的 4 个数据集是不同的人士进行标注的,也有不一致的标注标准,为了处理标注不一致和标注遗漏的问题,作者提出对背景进行 mask 的方法。同时为了解决不同类别标注不一致的问题,对每个类别的损失还进行加权,加权系数就是这个类别标注数量占总标注数量的比例 w ( c ) = 1 / ∑ i m i ( c ) w(c)=1/\sum_{i}^{} {m_{i}(c)} w(c)=1/imi(c)

评估指标

指标方面,使用 DSC(Dice coefficient)作为评估指标。它的计算如下:
D S C = 2 T P 2 T P + F N + F P DSC=\frac {2TP} {2TP+FN+FP} DSC=2TP+FN+FP2TP

实验及指标

和别的方法对比的结果如下表所示,可以看到性能具有提升并且在所有 9 个类别上都有指标计算。
在这里插入图片描述
在损失函数方面,也是 Dice loss 和 focal loss 的组合取得了最佳性能:
在这里插入图片描述
当然最后还有一些没有完全解决的问题,包括使用 DSC 评价标准是否合适,以及对这种标注标注不一致的数据的处理也是一个开放性的问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哇哇九号

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值