向量与矩阵的范数

1. 向量的范数

向量的1范数:向量中每个元素绝对值的和

||\epsilon||_1 = \sum^n_{i=1}|\epsilon_i|

向量的2范数:向量中的元素平方和,之后再开平方

||\epsilon||_2=\sqrt{\sum^n_{i=1}\epsilon^2_i}

向量的无穷\infty范数:向量所有元素的绝对值中最大(正无穷范数)/最小(负无穷范数)的

正无穷范数:||\epsilon||_{+\infty}=\text{max}_{1\leq i\leq n}|\epsilon_i|

负无穷范数:||\epsilon||_{-\infty}=\text{min}_{1\leq i\leq n}|\epsilon_i|

2. 矩阵的范数

矩阵的1范数(列模):矩阵的每一列上元素的绝对值先求和,再从中取最大的

||A||_1=\text{max}_{1\leq j \leq n}\sum^n_{i=1}|a_{ij}|

矩阵的2范数(行模):对于矩阵A,A^TA的最大特征值开平方

||A||_2=\sqrt{\lambda_{\text{max}}(A^TA)}=\sqrt{\text{max}|\lambda_i|}

矩阵的无穷范数(行模):矩阵每一行的元素的绝对值先求和,再从中取最大的

||A||_{\infty}=\text{max}_{1\leq i \leq n}\sum^n_{j=1}|a_{ij}|.

矩阵的L_0范数:矩阵非0元素的个数

矩阵的L_1范数:矩阵中每个元素绝对值之和。

矩阵的L_{21}范数:矩阵先以每列为单位,求每一列向量的2范数,最后将所得结果求向量的1范数。

矩阵的F范数:矩阵各个元素平方和再开根号,也被称为矩阵的2范数

参考:

向量与矩阵的范数(比较1-范数、2-范数、无穷范数、p-范数、L0范数 和 L1范数等)

向量范数与矩阵范数

  • 1
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值