CVPR 2023: QPGesture: Quantization-Based and Phase-Guided Motion Matching for Natural Speech-Driven

QPGesture利用量化技术表示手势,通过Levenshtein距离匹配语音和手势,借助相位信息指导选择。预处理侧重于抖动减少,同时分析语音特征。评估包括自然度、同步性和语义适当性。与其他工作相比,QPGesture更强调量化和相位引导策略。
摘要由CSDN通过智能技术生成

我们使用以下6个分类标准对本文的研究选题进行分析:

1. 手势表示

  • 量化手势: 将手势分解为离散单元或代码。矢量量化变分自编码器 (VQ-VAE) 等技术可用于创建有意义的手势元素“代码簿”。
    • 优势: 降低计算复杂度、提高手势与语音匹配的效率、并平滑运动数据中的随机变化。
  • 连续手势: 这里,手势表示为人体运动的连续轨迹,捕捉了人体运动的流畅流动。
    • 优势: 具有更具表现力和细节的手势的潜力、在混合和修改手势序列方面具有灵活性。

2. 语音-手势对齐

  • Levenshtein 距离: 该指标计算将一个序列(量化手势)转换为另一个序列(量化语音)所需的最小编辑次数(插入、删除或替换)。它有助于找到语音和手势表示之间的最佳匹配,克服时间差异。
  • 语义对齐: 该方法优先考虑口语单词的含义,选择与说话者传达的想法或情绪在概念上一致的手势。

3. 运动匹配策略

  • 相位引导匹配: 人体运动通常表现出循环模式(例如步行ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值