自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(157)
  • 收藏
  • 关注

原创 React:构建Web应用的未来

React彻底改变了我们构建Web应用程序的方式,为开发人员提供了强大而高效的工具包,用于创建动态、交互式和高性能的用户界面。通过采用React的核心概念、最佳实践和实际应用,开发人员可以释放这项突破性技术的全部潜力,并构建Web应用程序的未来。React的虚拟DOM和高效的差异算法提供了卓越的性能,特别是在动态和数据密集型应用程序中。基于组件的架构促进了可重用性,允许开发人员通过组合更小的、独立的组件来构建复杂的UI。利用组件组合的力量,通过组合更小的、专门的组件来构建复杂的UI。

2024-05-28 10:14:59 691

原创 Element-UI完全掌握指南:快速构建优雅Web应用的捷径

在当今快节奏的Web开发领域,拥有一个强大而高效的UI组件库至关重要。Element-UI,一个基于Vue.js的组件库,因其简洁的设计、丰富的功能和易用性而备受开发人员青睐。本综合指南将带您快速掌握Element-UI,从安装设置到构建复杂的自定义组件。通过学习本综合指南,您将获得充分利用Element-UI的强大功能所需的知识和技能。无论您是构建简单的Web应用程序还是复杂的企业级项目,Element-UI都为您提供了创建美观、直观且功能强大的用户界面的工具和灵活性。

2024-05-28 10:10:09 598

原创 精通SCSS:用Sass的超能力提升你的CSS技能

CSS是网页设计的基石,但随着项目规模的增长,它的局限性也逐渐显现。SCSS作为CSS的强大扩展,为你提供了变量、嵌套、混合宏和函数等功能,简化了工作流程,使你的代码更易于维护。无论你是刚踏入网页开发的新手,还是寻求提升CSS技能的经验丰富的程序员,本综合指南都将带你全面了解SCSS的精髓。SCSS的核心是一个预处理器,它可以编译成标准的CSS。这意味着你用SCSS编写代码,然后像Sass或Dart Sass这样的工具会将其转换成浏览器可读的CSS。拥抱SCSS的力量,见证你的样式表的蜕变吧!

2024-05-28 09:57:49 416

原创 Chrome DevTools 助力网页开发:新手入门指南

网页开发是一个充满活力的领域,拥有合适的工具将使您事半功倍。Chrome DevTools 正是这样一个强大的工具套件,它直接内置于您的 Chrome 浏览器中。无论您是刚涉足网页开发的新手,还是希望提升技能的经验丰富的专业人士,本指南都将为您介绍 Chrome DevTools 的基本知识。请继续关注我们的后续文章,我们将深入探讨这些强大的工具。如果您希望我们在下一份指南中介绍特定的 DevTools 功能或工作流程,请在评论中告诉我们。控制台是您的 JavaScript 代码焕发生机的地方。

2024-05-28 09:52:23 305

原创 ECMAScript 深度解析:现代 JavaScript 综合指南

JavaScript,作为无所不在的 Web 语言,其背后的标准规范称为 ECMAScript。无论您是经验丰富的 Web 开发人员还是刚开始编程之旅的新手,理解 ECMAScript 都是释放 JavaScript 全部潜能并构建动态交互式应用程序的关键。跟上 ECMAScript 的最新发展对于构建现代、高效的 JavaScript 应用程序至关重要。封装意味着将数据(属性)和操作数据的函数(方法)捆绑到一个单元(对象)中。ECMAScript 的支柱,对象是属性(键值对)的集合。

2024-05-28 09:39:52 994

原创 微软 Edge 深度探索:现代浏览器的蜕变

微软 Edge 浏览器经历了令人瞩目的转变,从备受诟病的 Internet Explorer 继任者,发展成为功能强大、特性丰富的浏览器,与 Google Chrome 和 Mozilla Firefox 等行业巨头正面竞争。浏览器的垂直标签页功能是处理多个标签页的用户的福音,让识别和切换标签页变得更容易。然而,与任何基于 Chromium 的浏览器一样,资源消耗可能会很高,尤其是在安装了许多扩展程序的情况下。然而,大量的扩展可能会让人不知所措,一些用户可能会发现很难找到最有用的扩展。

2024-05-28 09:33:45 995

原创 Path following algorithms for ℓ2-regularized M-estimation with approximation guarantee

该标准根据用于衡量模型对数据拟合程度的损失函数的特征来区分研究。该标准根据用于计算或近似解决方案路径的特定算法对研究进行分类。该标准根据 M 估计问题中使用的正则化类型对研究进行分类。该标准根据解决方案路径的哪一部分是主要关注点来区分研究。该标准根据应用路径跟踪算法的具体领域对研究进行分类。该标准根据为所提出的算法建立的理论结果来区分研究。

2024-05-28 09:19:48 197

原创 Bootstrapping Vision-Language Learning with Decoupled Language Pre-training

训练目标:该标准描述了用于指导学习过程的不同损失函数。**研究重点:**该标准强调研究的主要研究方向。模型架构:该标准侧重于 VL 模型的结构设计。监督级别:该标准表明训练数据中的标签程度。模态:该标准指的是模型训练的数据类型。该标准区分模型的训练方式。

2024-05-28 09:12:29 588

原创 AIGC 风口正盛,入局时机是否成熟?——多维度深度剖析

2023 年,AIGC(人工智能生成内容)如同一匹黑马闯入大众视野,其在文本、图像、音频、视频等领域的惊人表现引发了新一轮技术浪潮。众多企业纷纷入局,资本市场也热情高涨,AIGC 似乎正处于一个黄金发展期。然而,面对如此火热的赛道,我们不禁要问:现在真的是进入 AIGC 行业的最佳时机吗?本文将从技术、市场、政策等多个维度,深入探讨 AIGC 行业的发展现状,为您剖析入局的机遇与挑战。

2024-05-27 20:48:58 496

原创 破译智能密码:大模型进阶之路

然而,数据质量参差不齐,如何筛选、清洗和标注数据,使其更贴近人类语言的复杂性和多样性,是提升大模型理解能力的关键。如何设计更高效、更智能的算法,让大模型更快、更好地从数据中学习,是提升其智能水平的必经之路。如何设计更精妙的结构,使其在保持高效的同时具备强大的表达能力,是研究者们不断追求的目标。随着技术的不断进步,我们有理由相信,未来大模型将在更多领域发挥重要作用,为人类创造更加美好的未来。在资源有限的情况下,如何选择合适的模型规模,在性能和效率之间取得平衡,是需要考虑的重要因素。

2024-05-27 20:45:21 597

原创 开源大模型:AI 发展的未来引擎

开源大模型的魅力在于其开放性。人工智能(AI)正以前所未有的速度改变着我们的世界,而大模型作为 AI 发展的核心驱动力,其发展路径备受关注。闭源大模型通常由大型科技公司开发和维护,其高昂的成本和技术壁垒限制了中小企业和个人开发者对 AI 的应用。我相信,随着开源社区的不断发展壮大,开源大模型将成为 AI 发展的主流趋势。它将为我们带来更多创新、更智能的应用,推动 AI 在各个领域的深入发展,为人类社会创造更大的价值。而开源大模型则通过公开透明的方式,接受全球社区的监督和审查,从而更好地保障模型的安全性。

2024-05-27 20:40:38 492

原创 PaintSeg: Painting Pixels for Training-free Segmentation

它利用预训练的生成模型,这些模型可能是在 ImageNet 等大型数据集上训练的,但这不是 PaintSeg 论文的重点。虽然论文提到使用 Vision Transformer (ViT) 进行特征投影,但 PaintSeg 的核心依赖于用于图像修复和外涂的扩散模型,这对于创建用于分割的对比度至关重要。实例分割和提示引导分割。它也是提示引导的,因为它利用用户提供的提示(如粗略掩码、边界框、涂鸦或点)来启动和指导分割过程。PaintSeg 是免训练的,因为它不需要在预训练的生成模型之上进行额外的训练。

2024-05-27 10:17:39 350

原创 Cross-Episodic Curriculum for Transformer Agents

虽然 RL 实验的数据是在线收集的,但 Transformer 智能体是在收集到的数据上以监督方式离线训练的。本文明确关注改进 Transformer 智能体的学习和泛化,Transformer 智能体是一种在各种机器学习任务中获得突出地位的神经网络架构。本文重点讨论提高 Transformer 智能体在 RL(智能体通过试错学习)和 IL(智能体通过演示学习)设置中的学习效率和泛化能力。:这个标准指定了用于训练和评估学习算法的数据的来源。:这个标准概述了用于训练学习算法的策略。

2024-05-27 10:11:00 165

原创 Modelling Cellular Perturbations with the Sparse Additive Mechanism Shift Variational Autoencoder

SAMS-VAE模型是一种变分自编码器(VAE),是一种无监督学习模型。本文主要侧重于开发一种新模型,即稀疏加性机制转移变分自编码器(SAMS-VAE),以应对细胞扰动建模中的挑战。本文强调了SAMS-VAE模型在药物发现中的应用,其中了解干预对细胞的影响对于表征未知的生物学机制至关重要。虽然该模型主要是无监督的,但它以已知扰动剂量的形式结合了弱监督。该研究专门处理单细胞RNA测序(scRNA-seq)数据,这是一种测量单个细胞中基因表达的生物数据。此标准指定研究中使用的模型的基础结构。

2024-05-27 10:00:51 318

原创 OSDI 23:ORC: Increasing Cloud Memory Density via Object Reuse with Capabilities

这种传统方法侧重于识别和合并跨虚拟机 (VM) 或进程的相同内存页面。它分析原始内存内容以查找重复项,而无需考虑数据的更高层次结构。该技术可能效率很高,但没有考虑语义相似性。这种更复杂的方案超越了原始内存并识别跨 VM 的重复应用程序二进制文件和库。它认识到这些对象通常包含可共享的相同代码段,即使它们位于不同 VM 的不同内存地址中。这提供了更细粒度的去重,具有更高的空间节约潜力,但需要额外的处理来识别对象。此类别包括应用程序使用的可执行代码和预编译库。

2024-04-26 15:07:17 157

原创 OSDI 2023: Nimble Rollback Protection for Confidential Cloud Services

1. 研究领域2. 技术方法3. 目标环境4. 安全属性5. 性能指标6. 用例/应用1. 研究领域2. 技术方法3. 目标环境4. 安全属性5. 性能指标6. 用例/应用程序主要区别可能的相似之处即使 Nimble 具有独特的重点,它也可能与其他参考文献有共同点:

2024-02-26 11:06:05 324

原创 VectorFloorSeg: Two-Stream Graph Attention Network for Vectorized Roughcast Floorplan Segmentation

1. 数据格式2. 分割重点3. 输出完整性4. 建筑环境5. 方法6. 目标应用以下是一些使用这些标准对特定研究论文进行分类的示例:1. 数据格式:基于矢量VectorFloorSeg 直接处理楼层平面图的矢量表示形式。这在摘要中提到了“矢量楼层平面图中的规则元素(例如线段)”以及旨在克服像素级分割引起的问题。2. 分割重点:元素级分割该方法强调核心元素的识别和分割:它将“线段分类为房间边界”,并关注“由线段分割的区域”。这与保留矢量表示精度目标一致。3. 输出完整性:细粒度分割该论文旨在超越产生“混叠边

2024-02-26 10:23:34 204

原创 OSDI 2023: NCC Natural Concurrency Control for Strictly Serializable Datastores by Avoiding the Time

本文主要关注实现分布式数据存储的严格串行化。它提出了一种并发控制机制,该机制使用时间戳,但更重要的是,它提供了一种回退解决方案来解决时间戳排序中的限制,特别是在时间戳反转陷阱的情况下。

2024-02-23 11:25:47 154

原创 CVPR 2023: QPGesture: Quantization-Based and Phase-Guided Motion Matching for Natural Speech-Driven

1. 手势表示2. 语音-手势对齐3. 运动匹配策略4. 总体方法5. 预处理重点6. 评估指标1. 手势表示2. 语音-手势对齐3. 运动匹配策略4. 总体方法5. 预处理重点6. 评估指标潜在的关键差异

2024-02-23 11:13:47 323

原创 CVPR 2023: DIP: Dual Incongruity Perceiving Network for Sarcasm Detection

他们对讽刺心理基础的这种特定视角,以及他们将其方法建模的方式,可能是其区别特征。这些方法分析图像和文本中传达的信息之间的不一致。核心思想是,讽刺通常取决于文本的字面意思和图像中表达的情感之间的不匹配,反之亦然。极性(正面、负面、中立)是一个重要的因素,因为讽刺通常涉及公开表达的情感和暗示的情感之间的矛盾。最常见的方法,需要大量标记示例的数据集(包括讽刺和非讽刺)。结合不同的架构元素,例如将Transformer与基于图的推理结合起来,以获得多种方法的优势。他们可能会关注区分讽刺的其他语言或视觉线索。

2024-02-22 11:16:06 721

原创 OSDI 2023: Kerveros Efficient and Scalable Cloud Admission Control

Kerveros 主要强调其准入控制系统的可扩展性、准确性和在传统云环境中的反应性适应能力。

2024-02-22 10:58:29 218

原创 OSDI 2023: Hyrax Fail-in-Place Server Operation in Cloud Platforms

即使是处理优雅降级的参考文献通常也侧重于由于负载或功率限制而故意降低服务级别,而不是作为硬件故障的直接后果。Hyrax 在每个标准下都不完全属于单一类别。这突显了云计算中许多可靠性研究解决方案的复杂性和多方面性。

2024-02-21 15:53:35 162

原创 CVPR 2023: BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields

1. 问题域2. 方法3. 图像质量关注4. 场景动态5. 相机姿态处理6. 技术1. 问题域2. 方法3. 图像质量关注4. 场景动态5. 相机姿态处理6. 技术专注于显式、集成去模糊相机姿态和场景的联合优化处理动态场景范围差异

2024-02-21 15:43:14 551

原创 OSDI 2023: ExoFlow A Universal Workflow System for Exactly-Once DAGs

1. 恢复策略的重点2. 性能/恢复权衡优先级3. 组成方法4. 实施难度5. 用户选择6. 研究趋势1. 恢复策略的重点2. 性能/恢复权衡优先级3. 组成方法4. 实施难度5. 用户选择6. 研究趋势ExoFlow 的核心区别这与其他参考文献可能形成对比注意事项

2024-02-20 14:48:47 261

原创 CVPR 2023: Revisiting Residual Networks for Adversarial Robustness

(AutoAttack),并展示了对。类别(在块级和网络缩放级别),通过。

2024-02-20 11:35:04 118

原创 CVPR 2023: Multiscale Tensor Decomposition and Rendering Equation Encoding for View Synthesis

NRFF 建立在 NeRF 的连续表示概念之上,添加了多尺度结构和受光传输原理启发的特征编码,以实现更好的建模。

2024-02-19 15:00:28 239

原创 OSDI 2023: Core slicing closing the gap between leaky confidential VMs and bare-metal cloud

1. 信任模型基于虚拟机管理程序的虚拟机硬件辅助机密计算裸金属云服务器2. 安全重点(攻击向量)直接虚拟机管理程序攻击虚拟机管理程序级侧通道3. 安全解决方案基于硬件的完整性检查内存加密远程证明4. 安全限制残留的侧通道漏洞性能开销5. 部署模型公有云裸金属云混合方法6. 评价标准成本易用性 1. 信任模型:2. 安全重点(攻击向量):3. 安全解决方案:4. 安全限制:5. 部署模型:6. 采用因素: 潜在差异:

2024-02-19 14:45:09 221

原创 CVPR 2023: GANmouflage: 3D Object Nondetection with Texture Fields

该方法在对象的 3D 表示和场景的 3D 表示上进行操作,考虑深度和视点变化。伪装的有效性通过人类视觉搜索研究进行评估,评估其欺骗人类观察者的程度。该方法主要侧重于修改对象的纹理以实现伪装,而不是其运动或材料属性。该模型从场景数据中学习纹理,并使用优化过程找到最有效的伪装纹理。该研究侧重于设计和学习人工伪装技术,而不是直接模仿自然。目标是隐藏场景中的单个物体,而不是整个环境。

2024-02-10 22:18:15 708

原创 OSDI 2023: Conveyor One-Tool-Fits-All Continuous Software Deployment at Meta

1. 部署策略:2. 自动化水平:3. 目标环境:4. 应用类型:5. 研究重点:6. 研究方法:1. 部署策略:2. 自动化水平:3. 目标环境:4. 应用类型:5. 研究重点:6. 研究方法:目标环境:应用类型:研究重点:研究方法:此外:

2024-02-10 22:02:02 677

原创 CVPR 2023: Style Projected Clustering for Domain Generalized Semantic Segmentation

这一标准涉及将在一个域(源)上训练的模型适应到另一个域(目标)上以良好地执行,而目标域的标记数据有限。这一标准区分了不同方法对解决泛化到未见过数据的挑战的处理方式。这一标准侧重于模型如何学习和存储图像表示以进行分割任务。这一标准侧重于模型最终如何预测图像中每个像素的语义标签。这一标准考虑了研究针对的特定领域或图像类型。这一标准考虑了用于评估分割模型性能的指标。

2024-02-08 17:10:37 447

原创 OSDI 2023: An Extensible Orchestration and Protection Framework for Confidential Cloud Computing

1. 技术:2. 范围:3. 目标受众:4. 部署复杂性:5. 性能影响:6. 安全性有效性:1. 技术:2. 范围:3. 目标受众:4. 部署复杂性:5. 性能影响:6. 安全性有效性:解释:本文与其他参考文献 的关键差异:技术:范围:目标受众:性能和安全性:

2024-02-08 16:46:58 183

原创 OSDI 2023: Userspace Bypass Accelerating Syscall-intensive Applications

请记住,这些标准提供了一个用于理解和比较研究工作的框架。每个方法的具体细节和细微差别将根据各个参考资料而有所不同。如果您能提供其他参考文献的摘要或描述,我很乐意帮助您更详细地将它们与 [54] 进行比较。请记住,这些只是根据有限的信息得出的潜在差异。更准确的比较需要其他参考文献的详细信息。

2024-02-07 09:42:22 189

原创 CVPR 2023: SFD2 Semantic-Guided Feature Detection and Description

1. 特征提取方法:2. 匹配策略:3. 监督信号:4. 应用领域:5. 计算效率:6. 性能指标: 1. 特征提取方法:2. 匹配策略:3. 监督信号:4. 应用领域:5. 计算效率:6. 性能指标:特征提取:匹配策略:其他潜在的区别:

2024-02-07 09:29:06 432

原创 OSDI 2023: Triangulating Python Performance Issues with Scalene

这些标准不是绝对的,在某些情况下可能会重叠。分析工具的具体特性取决于其设计选择和预期用例。虽然其他参考文献可能侧重于 CPU、内存或 GPU 分析等单个方面,但 本文似乎强调。高下载量和报告的积极影响表明,与其他使用较少的参考文献相比,本文 可能是一种。,这表明与其他参考文献中使用的纯采样或基于仪器的技术相比,它是一种。虽然一些参考文献可能是通用的分析工具,但 本文 似乎专门设计用于。等功能,这些功能可能在其他参考文献中并不存在。这可以平衡低开销和高精度。,提供更全面的性能视图。

2024-02-06 14:21:01 139

原创 CVPR 2023: RIAV-MVS Recurrent-Indexing an Asymmetric Volume for Multi-View Stereo

学习-优化 (Learning-to-optimize) 和迭代优化 (Iterative optimization)学习-基于全局方法 (Learning-based global method)多视图立体视觉 (Multi-view stereo)多视图 RGB (Multi-view RGB)密集深度图 (Dense depth map)完全监督 (Fully supervised)

2024-02-06 14:11:46 682

原创 CVPR 2023: Leapfrog Diffusion Model for Stochastic Trajectory Prediction

通过分析参考文献中的这些标准,可以全面了解不同的方法、它们的权衡以及它们对特定应用的适用性。该标准区分了轨迹预测中使用的不同扩散模型架构。该标准评估预测轨迹的准确性和质量。该标准考虑用于预测的信息类型。该标准评估模型生成预测的速度。该标准指定了研究应用的领域。该标准关注预测轨迹的性质。

2024-02-05 12:41:13 1060

原创 OSDI 2023: Ship your Critical Section Not Your Data Enabling Transparent Delegation with TCLocks

本文提到了“启用透明委派”和“运送关键部分”,这表明与其他参考文献中使用的锁相比,它是一种不同的同步机制。本文中提到的透明委派表明它可能不需要应用程序代码修改,这与其他参考文献中一些可能需要明确打包关键部分的基于锁的方法不同。本文称他们的方法与“最近的锁算法相比提供了性能改进”,这表明潜在的可扩展性优势。通过了解这些标准,可以更好地分析参考文献中介绍的研究,并确定最适合的特定需求和应用程序环境的机制。本文声称“性能改进”,表明与其他可能具有不同主要目标的参考文献相比,它关注于此方面。

2024-02-05 12:23:09 142

原创 OSDI 2023: RON One-Way Circular Shortest Routing to Achieve Efficient and Bounded-waiting Spinlocks

1. 锁机制:2. 通信成本优化:3. 数据共享特性:4. 可扩展性挑战:5. 架构考虑:6. 评估方法: 1. 锁机制:2. 通信成本优化:3. 数据共享特性:4. 可扩展性挑战:5. 架构考虑: 6. 评估方法:详细解释:锁机制:通信成本优化:目标数据共享:可扩展性挑战:架构考虑:

2024-02-04 18:59:52 212

原创 CVPR 2023: GeoLayoutLM Geometric Pre-Training for Visual Information Extraction

GeoLayoutLM通过显式纳入几何信息并将其用于关系抽取方面做出了重大贡献。虽然该论文主要侧重于RE并展示了相关基准的性能改进,但需要进一步探索以评估其在更广泛VIE应用中的泛化性和可解释性。通过彻底研究这些标准,研究人员可以全面了解 GeoLayoutLM 的进步及其对 VIE 领域的贡献。

2024-02-04 18:27:47 704

原创 CVPR 2023: Finding Geometric Models by Clustering in the Consensus Space

该方法不是直接将数据点分配给模型,而是根据数据点与多个模型的 “一致性” 对其进行分组,形成代表潜在新模型实例的簇。来找到新的单应性实例。这意味着它根据数据点与多个单应性的 “一致性” 对其进行分组,形成代表潜在新模型的簇。(高度支持) 的模型实例,然后利用它们指导对其他模型的搜索。这根据点与多个模型的 “一致性” 对其进行分组,可能会捕捉到更细微的关系并对异常值具有鲁棒性。(高度支持) 的单应性实例,然后使用它们来指导对其他单应性的搜索。,这对于处理复杂场景的计算成本高昂的方法来说,可能是一个重大优势。

2024-02-02 19:15:58 121

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除