CVPR 2023: Style Projected Clustering for Domain Generalized Semantic Segmentation

该研究通过利用图像之间的差异构建更丰富的表示空间,结合基于原型和特征嵌入的方法,以适应不同风格的语义分割任务。无监督的域适应策略可能不需要额外的标记数据,采用语义聚类进行决策,提高了对噪声和风格变化的鲁棒性。与传统方法相比,该方法在泛化方法、表示学习和决策制定等方面展现出独特优势。
摘要由CSDN通过智能技术生成

我们使用以下6个分类标准对本文的研究选题进行分析:

1. 泛化方法:

这一标准区分了不同方法对解决泛化到未见过数据的挑战的处理方式。

  • 基于正则化的方法: 这些方法尝试将所有图像强制到一个类似的特征空间中,通常通过最小化域特定变化等技术来实现。虽然这促进了对具有相似特征的未见过域的泛化,但它可能会限制有效表示不同风格和特征的能力。示例包括使用域对抗训练或不变特征学习的方法。
  • 基于差异的方法: 这些方法不是强制同质性,而是利用图像之间的差异来创建更丰富的表示空间。它们提取并存储独特的风格特征作为表示的基础。这允许更好地适应未见过的风格,因为模型可以识别并将其特征投射到这些已知的基上。

2. 表示学习:

这一标准侧重于模型如何学习和存储图像表示以进行分割任务。

  • 特征嵌入方法: 这些方法旨在为所有图像学习一个通用的特征空间,无论它们的域或风格如何。这通常涉及自编码器、域不变学习或瓶颈架构等技术。虽然它们对于处理各种数据很有效,但它们可能难以捕捉特定的风格细微差别。
  • 基于原型的方法: 这些方法利用原型来表示不同的类别或语义风格。每个原型都封装了其对应类别的基本特征。在分割过程中,将特征与这些原型进行比较以进行分类,从而实现高效且可泛化的预测。这种方法对于标记数据有限的场景特别有用,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

结构化文摘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值