传球游戏

问题描述
  上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
  游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
  聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
输入格式
  共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。
输出格式
  t共一行,有一个整数,表示符合题意的方法数。
样例输入
3 3
样例输出
2
数据规模和约定
  40%的数据满足:3<=n<=30,1<=m<=20
  100%的数据满足:3<=n<=30,1<=m<=30

解题思路:

dp[i][j]表示传i次球,将球传到j手里的的方法数;
 传一次球可以传到n,可以传到2,所以dp[1][n]=1;dp[1][2]=1;
 传0次球,则在第一个人手中,dp[o][1]=1;
状态转移方程为
dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1];
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
	int dp[35][35];
	int n,m;
	scanf("%d%d",&n,&m);
	memset(dp,0,sizeof(dp));
	dp[0][1]=1;
	dp[1][n]=1;
	dp[1][2]=1;
	for(int i=1;i<=m;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(j==1)
			dp[i][j]=dp[i-1][n]+dp[i-1][2];
			else if(j==n)
			dp[i][j]=dp[i-1][1]+dp[i-1][n-1];
			else
			dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1];
		}
	}
	printf("%d\n",dp[m][1]);
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值