问题描述
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球的方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有3个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
输入格式
共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。
输出格式
t共一行,有一个整数,表示符合题意的方法数。
样例输入
3 3
样例输出
2
数据规模和约定
40%的数据满足:3<=n<=30,1<=m<=20
100%的数据满足:3<=n<=30,1<=m<=30
100%的数据满足:3<=n<=30,1<=m<=30
解题思路:
dp[i][j]表示传i次球,将球传到j手里的的方法数;
传一次球可以传到n,可以传到2,所以dp[1][n]=1;dp[1][2]=1;
传0次球,则在第一个人手中,dp[o][1]=1;
状态转移方程为
dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1];
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int dp[35][35];
int n,m;
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
dp[0][1]=1;
dp[1][n]=1;
dp[1][2]=1;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(j==1)
dp[i][j]=dp[i-1][n]+dp[i-1][2];
else if(j==n)
dp[i][j]=dp[i-1][1]+dp[i-1][n-1];
else
dp[i][j]=dp[i-1][j-1]+dp[i-1][j+1];
}
}
printf("%d\n",dp[m][1]);
}