三个向量叉乘的公式的证明推导

三个向量叉乘的公式

在这里插入图片描述
二重积应该都看得懂有手就行 那么三重积应该怎么推导呢?

首先看标量三重积
标量三重积是三个向量中的一个和另两个向量的叉积相乘得到点积,其结果是个标量。
a,b,c为三个向量,则标量三重积定义为 a·(bxc)

证明
a=a1i+a2j+a3k
b=b1i+b2j+b3k
c=c1i+c2j+c3k

用两张图第一张是百度文库的,第二张是我用鼠标写的,因为百度文库少了一步关键的拆解过程
在这里插入图片描述在这里插入图片描述

然后是矢量三重积

在这里插入图片描述

[流氓证法]

先算bxc 会获得b向量和c向量所在平面的法向量 再叉乘a结果必为b和c所在平面
ax(bxc)=nb+mc

又因为此时的a必垂直(nb+mc
故 a·(nb+mc)=na·b+ma·c=0
则 n = ac , m = -ab
ax(bxc)=(ac) b-(ab)c

《Fundamentals Of Computer Graphics》虎书证法(二维):

在这里插入图片描述

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值