三个向量叉乘的公式的证明推导

三个向量叉乘的公式

在这里插入图片描述
二重积应该都看得懂有手就行 那么三重积应该怎么推导呢?

首先看标量三重积
标量三重积是三个向量中的一个和另两个向量的叉积相乘得到点积,其结果是个标量。
a,b,c为三个向量,则标量三重积定义为 a·(bxc)

证明
a=a1i+a2j+a3k
b=b1i+b2j+b3k
c=c1i+c2j+c3k

用两张图第一张是百度文库的,第二张是我用鼠标写的,因为百度文库少了一步关键的拆解过程
在这里插入图片描述在这里插入图片描述

然后是矢量三重积

在这里插入图片描述

[流氓证法]

先算bxc 会获得b向量和c向量所在平面的法向量 再叉乘a结果必为b和c所在平面
ax(bxc)=nb+mc

又因为此时的a必垂直(nb+mc
故 a·(nb+mc)=na·b+ma·c=0
则 n = ac , m = -ab
ax(bxc)=(ac) b-(ab)c

《Fundamentals Of Computer Graphics》虎书证法(二维):

在这里插入图片描述

### 向量三重积的概念 向量三重积是指三个向量之间的运算,通常由两个(cross product)和一个点(dot product)组成。它有两种主要形式:标量三重积和矢量三重积。 #### 标量三重积 标量三重积的结果是一个标量值,定义为: \[ [\mathbf{a}, \mathbf{b}, \mathbf{c}] = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \] 其中,\(\mathbf{a}\),\(\mathbf{b}\),\(\mathbf{c}\) 是三维空间中的向量。\((\mathbf{a} \times \mathbf{b})\) 表示向量 \(\mathbf{a}\) 和 \(\mathbf{b}\) 的结果,而该结果再与向量 \(\mathbf{c}\) 进行点操作[^5]。 几何上,标量三重积表示以这三个向量为棱边所构成的平行六面体的有符号体积。 #### 矢量三重积 矢量三重积的结果是一个向量,定义为: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) \] 利用矢量恒等式可以将其展开为更简单的形式: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] 这表明矢量三重积可以通过点和原始向量的线性组合来表达[^6]。 --- ### 计算公式与示例 假设给定三个向量分别为: \[ \mathbf{a} = (a_1, a_2, a_3), \quad \mathbf{b} = (b_1, b_2, b_3), \quad \mathbf{c} = (c_1, c_2, c_3) \] #### 标量三重积计算 按照定义,先计算 \(\mathbf{a} \times \mathbf{b}\): \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = ((a_2 b_3 - a_3 b_2)\mathbf{i} - (a_1 b_3 - a_3 b_1)\mathbf{j} + (a_1 b_2 - a_2 b_1)\mathbf{k}) \] 接着计算点部分: \[ [(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}] = (a_2 b_3 - a_3 b_2)c_1 - (a_1 b_3 - a_3 b_1)c_2 + (a_1 b_2 - a_2 b_1)c_3 \] 最终得到的是一个数值结果。 #### 矢量三重积计算 根据上述恒等式,可以直接代入具体分量进行计算。例如, \[ \mathbf{a} \cdot \mathbf{c} = a_1 c_1 + a_2 c_2 + a_3 c_3,\quad \mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] 因此, \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = ((a_1 c_1 + a_2 c_2 + a_3 c_3)(b_1, b_2, b_3)) - ((a_1 b_1 + a_2 b_2 + a_3 b_3)(c_1, c_2, c_3)) \] --- ### 示例代码实现 以下是 Python 中的一个简单实现: ```python import numpy as np # 定义向量 a = np.array([1, 0, 0]) b = np.array([0, 1, 0]) c = np.array([0, 0, 1]) # 标量三重积 scalar_triple_product = np.dot(np.cross(a, b), c) # 矢量三重积 vector_triple_product = np.cross(a, np.cross(b, c)) print(f"Scalar Triple Product: {scalar_triple_product}") print(f"Vector Triple Product: {vector_triple_product}") ``` 运行此代码会分别输出标量三重积和矢量三重积的结果。 ---
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值