三个向量叉乘的公式
二重积应该都看得懂有手就行 那么三重积应该怎么推导呢?
首先看标量三重积
标量三重积是三个向量中的一个和另两个向量的叉积相乘得到点积,其结果是个标量。
设a,b,c为三个向量,则标量三重积定义为 a·(bxc)
证明
a=a1i+a2j+a3k
b=b1i+b2j+b3k
c=c1i+c2j+c3k
用两张图第一张是百度文库的,第二张是我用鼠标写的,因为百度文库少了一步关键的拆解过程
然后是矢量三重积
[流氓证法]
先算bxc 会获得b向量和c向量所在平面的法向量 再叉乘a结果必为b和c所在平面
ax(bxc)=nb+mc
又因为此时的a必垂直(nb+mc)
故 a·(nb+mc)=na·b+ma·c=0
则 n = ac , m = -ab
故ax(bxc)=(ac) b-(ab)c