【论文阅读】MOA,《Mixture-of-Agents Enhances Large Language Model Capabilities》

前面大概了解了Together AI的新研究MoA,比较好奇具体的实现方法,所以再来看一下对应的文章论文。

论文:《Mixture-of-Agents Enhances Large Language Model Capabilities》
论文链接:https://arxiv.org/html/2406.04692v1

在这里插入图片描述

这篇文章的标题是《Mixture-of-Agents Enhances Large Language Model Capabilities》,作者们来自 Duke University 和 Together AI,以及 University of Chicago 和 Stanford University。

摘要:
文章提出了一种新的方法,称为 Mixture-of-Agents(MoA),利用多个大型语言模型(LLMs)的集体优势来提高自然语言理解和生成任务的性能。MoA 方法通过构建分层的 MoA 架构,每层包含多个 LLM Agents,每个Agent使用前一层所有Agents的输出作为辅助信息来生成其响应。MoA 模型在 AlpacaEval 2.0、MT-Bench 和 FLASK 等基准测试中取得了最先进的性能,超越了 GPT-4 Omni。

解决的问题:
文章解决的问题是如何有效地结合多个大型语言模型(LLMs)的专长,以创建一个更加强大和稳健的模型。尽管存在许多 LLMs 并在多个任务上取得了令人印象深刻的成就,但它们仍然面临着模型大小和训练数据的固有限制。此外,不同的 LLMs 具有不同的优势和专门化的任务方面,如何利用这些多样化的技能集是一个挑战。

主要方法:

  • Mixture-of-Agents(MoA)方法论: 提出了 MoA 方法,通过迭代过程利用多个 LLMs 来逐步提高生成质量。MoA 结构如图 2 所示,具有 l 层,每层 i 包含 n 个 LLMs,表示为 Ai,1, Ai,2, …, Ai,n。每一层的 LLMs 独立生成对给定提示的响应,并将这些响应呈现给下一层的Agent进行进一步的细化。
  • 代理角色的区分: 在合作过程中,LLMs 可以分为两种不同的角色:提议者(Proposers)擅长生成其他模型使用的有用参考响应;聚合者(Aggregators)则擅长将来自其他模型的响应综合成单一的高质量输出。
  • 性能指标和多样性考虑: 为了确保模型之间的有效协作并提高整体响应质量,选择每一层 MoA 的 LLMs 是至关重要的。选择过程主要基于两个标准:(a) 性能指标:模型在第 i 层的平均胜率在确定其是否适合包含在第 i + 1 层中起着重要作用;(b) 多样性考虑:模型输出的多样性同样重要,异构模型生成的响应比相同模型产生的响应贡献更大。
  • 评估和实验: 作者使用 AlpacaEval 2.0、MT-Bench 和 FLASK 等基准测试对 MoA 进行了全面评估,证明了所提出方法的显著改进。

文章的贡献包括提出了一个新颖的框架,发现了语言模型之间的协作性,并通过使用多个高度竞争的基准测试,实现了最先进的 LLM 性能。

1 Introduction

大型语言模型(LLMs)近年来在自然语言理解和生成领域取得了显著进展。这些模型在大量数据上进行预训练,然后与人类偏好对齐,以生成有用和连贯的输出。然而,尽管有众多的LLMs和它们令人印象深刻的成就,它们仍然面临着模型大小和训练数据的固有限制。进一步扩大这些模型的规模异常昂贵,通常需要在数万亿个token上进行广泛的重新训练

与此同时,不同的LLMs拥有独特的优势,并在各种任务方面专业化。例如,一些模型擅长于复杂指令的跟随,而其他模型可能更适合于代码生成。不同LLMs之间技能组合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值