Fisher确切概率
基本原理
比较两组有效率是否有差异。
在周边合计不变的情况下,计算实际频率变动时的Pi(概率)。然后计算累积概率,依据检验水平做推断。
累积概率的计算
以a从小到大的概率排序
左侧概率:现有样本极其左的累积概率,即本例中的p1至p5的概率和,P左=0.1081。
右侧概率:现有样本极其右的累积概率,即本例中的p5至p10的概率和,P右=0.9795。
双侧概率:Pi≤P的累积概率,即本例中P1至P5、P10的概率和,P双=0.1210。若a+b=c+d或a+c=b+d,则序列呈对称分布,则计算单侧累积概率2为双侧概率。
检验的步骤
Step1:建立假设
H0:π1=π2 即试验组与对照组有效率相等
H1:π1≠π2 即试验组与对照组有效率不相等
α=0.05
Step2:双侧概率
P= P1+P2+P3+P4+P5+P10=0.1210
Step3:在α水平下,得出结论
P>0.05
不拒绝H0,试验组和对照组有效率相等。
如何理解Fisher的累积概率?
观察到的事件以及比观察到的事件更极端的事件的发生概率。判定累积概率是否落在给定的拒绝域内,p<0.05,则在拒绝域内,拒绝原假设。