Reinforcement Learning:Model-Free Prediction 笔记

MDP:

Monte-Carlo learning

蒙特卡洛学习。是通过样本来判断整体的情况,没有MDP中的P和R,直接从episodes(需要有terminate state)中获得return value,计算mean作为这个state的value。没有bootstrapping,通过采样进一步获取别的metric,而是直接使用episode。MC可以用在episodic MDP(所有的episodes必须终止)

MC的目标就是在某个policy下估计value function,value的计算是使用所有的episodes的平均return award,而不是expected return reward。

First-Visit MC Policy Evaluation

为了估计状态s的value,在计算value的时候,只把开始状态从在state s的这个episode计算到最终需要估计的结果value里面。每有一个这样一个计数器N+1,total reward加上这个episode的return reward。那么最终这个state的value就是V(s) = S(s)/N(s),当N趋向于无穷的时候,那么这个值接近于真是的expected value。在这里,你会发现,所谓的MC就是随机采样的意思,在机器学习领域,使用MC可以在概率图模型里面,根据概率生成随机样本来估计最终的joint probability。

Every-Visit MC Policy Evaluation

为了估计state s的value,把每个有经过这个state的episode的return value加上去,对应的counter也要加一。然后再取平均的return reward作为最终的state value。

在slide中提出了一个increment mean的东西,就是计算mean的时候不需要每次把所有的都计算一遍,只需要把新加入的元素加进去,大大减少了计算量。
这里写图片描述

把上面的东西加到MCL里面,可以得到:
这里写图片描述

在遇到non-stationary问题的时候,可以忽略原episode的参数:
这里写图片描述

Temporal-Difference Learning

时序差分学习。和MCL有不少相同点,不同点在于TD从不完整的episode中可以学习,通过bootstrapping。通过猜想来更新猜想。

具体的MCL和TD在公式上的差别如下:
这里写图片描述

所以从公式上可以看出,TD不需要使用有terminate state的episode,所以在进行每一步之后可以进行一次迭代学习,所以可以进行online learning。MCL必须在整个episode到terminate之后才能学习,所以是off-line的。TD可以用于连续空间,MC只能用于episodic environment。

TD对初始值更敏感,low viriance,some bias,比MCL更高效;MC的variance 更大,zero bias,对初始值更不敏感。TD在expolit Markov特性,MC不依赖于这点,可以在non-Markov environment中比较高效。

对于bootstrapping和sampling的区别:
这里写图片描述

TD(lambda)

根据计算return award的step的不同,可以看出MC与TD的差别:
这里写图片描述

以下是一种新的TD的方法,就是改变了 Gλt
这里写图片描述

对TD( λ )的总结:
这里写图片描述

Useful Links:

【1】Model-free Slide: http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching_files/MC-TD.pdf
【2】Bootstrapping: https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

在模型无关的分层强化学习中,学习表示是一项重要的任务。学习表示是指通过提取有用的信息和特征来将观察数据转化为表示向量。这些表示向量可以用于解决强化学习问题中的决策和行动选择。 模型无关的分层强化学习是指不依赖于环境模型的强化学习方法。它通常由两个部分组成:低层控制策略和高层任务规划器。低层控制策略负责实际的行动选择和执行,而高层任务规划器则负责指导低层控制策略的决策过程。 学习表示在模型无关的分层强化学习中起到至关重要的作用。通过学习适当的表示,可以提高对观察数据的理解能力,使得模型能够捕捉到环境中的重要特征和结构。这些表示可以显著减少观察数据的维度,并提供更高层次的抽象,从而简化了决策和规划的过程。 学习表示的方法多种多样,包括基于深度学习的方法和基于特征选择的方法。基于深度学习的方法,如卷积神经网络和循环神经网络,可以通过学习多层次的特征表示来提取环境观察数据的有用信息。而基于特征选择的方法则通过选择最有信息量的特征来减少表示的维度,从而简化了模型的复杂度。 总之,学习表示在模型无关的分层强化学习中起到了至关重要的作用。通过学习适当的表示,模型可以更好地理解观察数据并进行决策和规划。不同的方法可以用来实现学习表示,包括基于深度学习的方法和基于特征选择的方法。这些方法的选择取决于具体任务和问题的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值