视觉大模型高效应用方法盘点(内附论文代码)

9e0efa931fb133aaf6a46ebb9c0e86c6.gif

大规模视觉语言模型具有计算资源消耗大、模型推理速度慢等问题。为此,可以使用模型压缩、量化、剪枝等技术,减少模型参数量和计算量,从而提高模型推理速度。


例如,可以使用剪枝算法去除冗余参数、使用量化技术将模型参数量化为低精度数值、或者使用知识蒸馏技术将大模型的知识转移至小模型中。

这里为同学们整理好了17篇大模型高效计算和应用相关方向的必读论文+复现代码!帮助同学们学会如何在计算资源有限的情况下,充分利用模型的能力,提高应用效率。

扫码添加企微,免费领取资料合集!


33579e8468afaad60e2d26493517549a.png

另外,在大模型的高效处理方式中,模型剪枝是去除冗余信息最直接的方式,可以从根本上解决计算和内存的压力。

模型剪枝的具体方法,包含:

 Regularization-based channel pruning techniques

 Property-based channel pruning techniques

 Search-based channel pruning techniques

以及目前的前沿方法:Any Structural Pruning。

更多关于模型剪枝的知识详解,将在7月18日20:00,由顶刊审稿人Luking老师直播分享。Luking老师将从多篇经典论文入手,讲解模型剪枝的技术背景及经典方法。更会现场讲解CVPR2023《DepGraph: Towards Any Structural Pruning》一文,分析模型剪枝的前沿方法。

预约直播,免费领取17篇必读论文+复现代码!快来扫码领取吧👇👇👇

e126ad4630ab08bb8c2e240e70d430d0.png

直播干货抢先看

51224d717f1bc79e12a47c943ab6d7d3.gif

1bee80f4ad0aadea2a6af642cad8f185.png

扫码添加企微

免费领取17篇必读论文+复现代码!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值