ICLR 2024 | 脉冲神经网络的meta架构设计:启发下一代神经形态芯片设计

本文介绍了Meta-SpikeFormer,一种基于脉冲神经网络的元架构,旨在缩小SNN与ANN的性能差距。通过在Transformer-based SNN中采用稀疏加法和新的脉冲卷积方法,该架构在ImageNet-1K上实现了80%的准确率,同时减少了17%的参数量。Meta-SpikeFormer的通用设计使其成为首个能处理分类、检测和分割任务的直接训练SNN,为神经形态芯片设计提供了新思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

99156da384097f49cad8d4d499cb6f93.gif

©PaperWeekly 原创 · 作者 | 李国齐课题组

单位 | 中国科学院自动化研究所

研究方向 | 类脑计算

30786900145be3a5302d93a5902474e3.png

论文地址:

Spike-driven Transformer V2: Meta Spiking Neural Network Architecture Inspiring the Design of Next-generation Neuromorphic Chips

代码地址:

https://github.com/BICLab/Spike-Driven-Transformer-V2

4b618f1fec736125df014afb7fe833af.png

背景

在神经形态芯片上运行脉冲神经网络(Spiking Neural Network,SNN)的神经形态计算,是类脑计算领域的主流发展方向。CNN-based SNN 是神经形态计算领域内的主流架构,几乎所有的神经形态芯片都支持这一架构。

最近,Transformer-based SNN 架构在 SNN 领域内兴起,并表现出了相当的竞争力,目前尚未有神经形态芯片专门针对这一新兴架构设计。此外,在性能方面,现有 spiking Transformer 架构仅能够与 state-of-the-art 的 spiking CNN 算法相持平,并未表现出明显的优势。

本文的目标是探索 SNN 的 meta 架构设计,以期在算法和硬件两个层面上推动 SNN 领域的发展。在算法层面,展示 spiking Transformer 架构相对于 spiking CNN 在任务性能通用性方面的优势,缩小 SNN 和 ANN 之间的性能差距。

在硬件层面,spiking Transformer 的元架构设计有助于减少 Transformer-based SNN 神经形态芯片设计时所需要的算法探索成本推动神经形态计算领域中下一代基于 spiking Transformer 的神经形态芯片的发展。

f290dfd8e766b098b4d1cae7e0fe927a.png

本文贡献

本文将 Spike-driven Transformer [1] 扩展成一种元 SNN 架构,命名为 "Meta-SpikeFormer". 本文的主要贡献包括:

  • SNN 架构设计。本文设计了一种仅包含稀疏加法的 meta Transformer-based SNN 架构,主要包括了宏观层面的 Conv-based 和 Transformer-base SNN 块设计,以及微观层面上的设计,包括几种新的脉冲卷积方法,脉冲形式 Q,K,V 矩阵的生成方法,以及三种具有不同计算复杂度的脉冲驱动自注意力(Spike-Driven Self-Atttention,SDSA)算子等。

  • 性能。所提出的 Meta-SpikeFormer 使得 SNN 领域首次在 ImageNet-1K 上达到 80%,比当前的 state-of-the-art 基线 Spike-driven Transformer [1] 性能提升了 3.7%,但参数量减少了 17%。

  • 通用性。Meta-SpikeFormer 是首个可以同时处理分类、检测、分割的直接训练 SNN 架构。Meta-SpikeFormer 在 ImageNet-1K,HAR-DVSÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值