©PaperWeekly 原创 · 作者 | 李国齐课题组
单位 | 中国科学院自动化研究所
研究方向 | 类脑计算
论文地址:
Spike-driven Transformer V2: Meta Spiking Neural Network Architecture Inspiring the Design of Next-generation Neuromorphic Chips
代码地址:
https://github.com/BICLab/Spike-Driven-Transformer-V2
背景
在神经形态芯片上运行脉冲神经网络(Spiking Neural Network,SNN)的神经形态计算,是类脑计算领域的主流发展方向。CNN-based SNN 是神经形态计算领域内的主流架构,几乎所有的神经形态芯片都支持这一架构。
最近,Transformer-based SNN 架构在 SNN 领域内兴起,并表现出了相当的竞争力,目前尚未有神经形态芯片专门针对这一新兴架构设计。此外,在性能方面,现有 spiking Transformer 架构仅能够与 state-of-the-art 的 spiking CNN 算法相持平,并未表现出明显的优势。
本文的目标是探索 SNN 的 meta 架构设计,以期在算法和硬件两个层面上推动 SNN 领域的发展。在算法层面,展示 spiking Transformer 架构相对于 spiking CNN 在任务性能和通用性方面的优势,缩小 SNN 和 ANN 之间的性能差距。
在硬件层面,spiking Transformer 的元架构设计有助于减少 Transformer-based SNN 神经形态芯片设计时所需要的算法探索成本,推动神经形态计算领域中下一代基于 spiking Transformer 的神经形态芯片的发展。
本文贡献
本文将 Spike-driven Transformer [1] 扩展成一种元 SNN 架构,命名为 "Meta-SpikeFormer". 本文的主要贡献包括:
SNN 架构设计。本文设计了一种仅包含稀疏加法的 meta Transformer-based SNN 架构,主要包括了宏观层面的 Conv-based 和 Transformer-base SNN 块设计,以及微观层面上的设计,包括几种新的脉冲卷积方法,脉冲形式 Q,K,V 矩阵的生成方法,以及三种具有不同计算复杂度的脉冲驱动自注意力(Spike-Driven Self-Atttention,SDSA)算子等。
性能。所提出的 Meta-SpikeFormer 使得 SNN 领域首次在 ImageNet-1K 上达到 80%,比当前的 state-of-the-art 基线 Spike-driven Transformer [1] 性能提升了 3.7%,但参数量减少了 17%。
通用性。Meta-SpikeFormer 是首个可以同时处理分类、检测、分割的直接训练 SNN 架构。Meta-SpikeFormer 在 ImageNet-1K,HAR-DVSÿ