Large Language Model Adaptation for Financial Sentiment Analysis

828 篇文章 3 订阅

已下架不支持订阅

15 篇文章 0 订阅
本文研究了大型语言模型(LLM)在金融情绪分析中的应用,通过微调和适应策略,使得小型LLM在金融任务上的性能与大型模型相当,同时更高效。实验表明,针对金融领域的LLM在特定任务上超越了通用LLM,且提出了一种生成指令数据集的方法。尽管有局限性,如生成任务和未见过的任务上的表现,但未来可能通过低秩适配器等技术进一步改进。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Large Language Model Adaptation for Financial Sentiment Analysis》的翻译。

金融情绪分析的大型语言模型自适应

摘要

自然语言处理(NLP)最近通过提供对公司和市场财务文件的高度有价值的见解,在金融机构中获得了相关性。然而,由于文本的复杂性和特定术语的使用,金融领域的前景给NLP带来了额外的挑战。即使在使用具有良好自然语言理解和生成能力的大型语言模型(LLM)时,泛化语言模型也往往无法完成专门为金融量身定制的任务。本文针对金融领域,高度重视金融情绪分析,对LLM自适应方法进行了研究。为此,使用多种策略对两个参数小于1.5B的基础模型进行了调整。我们表明,通过对财务文件和说明进行仔细的微调,这些基础模型可以适应目标领域。此外,我们观察到,小型LLM的性能与大型模型相当,同时在参数和数据方面更高效。除了模型之外,我们还展示了如何通过LLM生成人工指令,以增加指令数据集的样本数量。

1 引言

2 相关工作

3 方法

4 结果

5 结论

该项目涵盖了财务LLM的广泛方面。通过

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值