本文是LLM系列文章,针对《Large Language Model Adaptation for Financial Sentiment Analysis》的翻译。
摘要
自然语言处理(NLP)最近通过提供对公司和市场财务文件的高度有价值的见解,在金融机构中获得了相关性。然而,由于文本的复杂性和特定术语的使用,金融领域的前景给NLP带来了额外的挑战。即使在使用具有良好自然语言理解和生成能力的大型语言模型(LLM)时,泛化语言模型也往往无法完成专门为金融量身定制的任务。本文针对金融领域,高度重视金融情绪分析,对LLM自适应方法进行了研究。为此,使用多种策略对两个参数小于1.5B的基础模型进行了调整。我们表明,通过对财务文件和说明进行仔细的微调,这些基础模型可以适应目标领域。此外,我们观察到,小型LLM的性能与大型模型相当,同时在参数和数据方面更高效。除了模型之外,我们还展示了如何通过LLM生成人工指令,以增加指令数据集的样本数量。
1 引言
2 相关工作
3 方法
4 结果
5 结论
该项目涵盖了财务LLM的广泛方面。通过