本文是LLM系列文章,针对《A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions》的翻译。
通信、网络和服务管理的大型语言模型综述:应用洞察、挑战和未来方向
摘要
近几十年来,通信网络的快速发展加剧了对高级网络和服务管理(NSM)策略的需求,以满足对这些网络的效率、可扩展性、增强性能和可靠性日益增长的需求。大型语言模型(LLM)因其在各种自然语言处理(NLP)任务中无与伦比的能力和生成上下文感知见解而受到极大关注,为自动化各种通信NSM任务提供了变革性的潜力。对比考虑单个网络域的现有调查,本调查调查了不同通信网络域之间LLM的集成,包括移动网络和相关技术、车载网络、基于云的网络和基于雾/边缘的网络。首先,该调查提供了LLM的基础知识,明确详细介绍了通用Transformer架构、通用和特定领域的LLM、LLM模型预训练和微调,以及它们与通信NSM的关系。在网络监控和报告、人工智能网络规划、网络部署和分布以及持续网络支持的新分类下,我们对每个不同网络域中NSM任务的LLM应用程序进行了广泛的分类,探索了现有文献及其迄今为止的贡献。然后,我们确定了现有的挑战和悬而未决的问题,以及LLM驱动的通信NSM的未来研究方向,强调了对可扩展、可适