极限学习机原理(含公式推导透彻)

本文深入介绍了极限学习机(ELM)的原理,包括传统前馈神经网络结构、ELM的提出者黄广斌的定理以及ELM算法流程。ELM的关键在于随机初始化输入层和隐含层的权重与偏置,通过求解伪逆矩阵确定输出层权重。详细推导了ELM如何从输入数据生成预测结果。
摘要由CSDN通过智能技术生成

写在前面:本文主要介绍elm极限学习机的原理及公式推导

一.传统的前馈神经网络结构

1.前馈神经网络结构

传统的单隐层前馈神经网络,输入层n个神经元、隐含层L个、输出层m个神经元,如图1。
对于该种神经网络,有3个重要参数决定了该网络输入到输出的计算过程。你可以理解为一个函数,其中关键的参数就是这三个。分别是输入层权值、隐含层权值、隐含层偏置。
图1
输入层与隐含层连接权值W,比如Wji表示输入层第i个,与隐含层第j个神经元的连接权值。
在这里插入图片描述
隐含层权值矩阵:隐含层与输出层之间的连接权值β,其中βjk表示隐含层第j个神经元与输出层第k个神经元之间的连接权值。

在这里插入图片描述
隐含层神经偏置矩阵b:为一维矩阵,代表对输出的调整。(个人理解)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值