扩展卡尔曼滤波,无迹卡尔曼滤波和统计线性化滤波器

背景说明

由于在工程应用中,系统的动态模型和量测模型往往不是线性的,此时,卡尔曼滤波不再适用。所以本文介绍三种模型构造高斯逼近的方法。

  1. 基于泰勒基数展开的扩张卡尔曼滤波(extend Kalman filter,EKF);
  2. 基于统计线性化的统计线性化滤波器(statistically linearized filter,SLF);
  3. 基于无迹变换的无迹卡尔曼滤波(unscented Kalman filter,UKF)。

无迹卡尔曼滤波被认为是统计线性化滤波的逼近。ULF优于EKF在于:SLF是更全局的逼近。不足在于:非线性函数的期望值必须进行闭型解算。UKF不要求模型函数可微,不要计算雅可比矩阵,但UKF的精度低于SLF,因为SLF采用了更多的数据;且UKF计算步骤较多。

扩展卡尔曼滤波

将高斯随机变量性转换在另一个随机变量y:
x ∼ N ( m , P ) y = g ( x ) \bm {x \sim N(m, P) } \\ \bm{y = g(x)} xN(m,P)y=g(x)

g ( x ) \bm{g(x)} g(x)进行泰勒展开,设 x = m + δ x \bm{x = m + \delta x} x=m+δx,且 δ x ∼ N ( m , P ) \bm{\delta x \sim N(m,P)} δxN(m,P)。其中 G x ( m ) , G x x i ( m ) \bm{G_{x}(m),G^i_{xx}(m)} Gx(m),Gxxi(m)分别是 g \bm{g} g的雅可比矩阵和 H e s s i a n \bm{Hessian} Hessian矩阵。
g ( x ) = g ( m + δ x ) ≈ g ( m ) + G x ( m ) δ x + ∑ 1 2 δ x G x x i δ x e i + . . . \bm{g(x) = g(m + \delta x) \approx g(m) + G_{x}(m)\delta x + \sum{\frac{{1}}{2}}\delta xG^i_{xx}\delta xe_{i}}+... g(x)=g(m+δx)g(m)+Gx(m)δx+21δxGxxiδxei+...

利用展开式中的前两项逼近 g ( x ) \bm{g(x)} g(x),且可求起均值和方差分别为:
g ( x ) = g ( m + δ x ) ≈ g ( m ) + G x ( m ) δ x E [ g ( x ) ] = g ( m ) E [ ( g ( x ) − E [ g ( x ) ] ) ( g ( x ) − E [ g ( x ) ] ) T ] = G x ( m ) P G x T ( m ) \bm{g(x) = g(m + \delta x) \approx g(m) + G_{x}(m)\delta x} \\ \bm{E[g(x)] = g(m)} \\ \bm{E[(g(x) - E[g(x)])(g(x) - E[g(x)])^T] = G_x(m)PG^T_x(m)} g(x)=g(m+δx)g(m)+Gx(m)δxE[g(x)]=g(m)E[(g(x)E[g(x)])(g(x)E[g(x)])T]=Gx(m)PGxT(m)

通常需要求 x , y \bm{x,y} x,y的联合协方差阵,该联合协方差阵可通过增光变换得到:
Alt

扩展卡尔曼滤波-过程和量测噪声可叠加类型:

叠加变换的通式为:【注意】该变换通式在后面的统计线性化滤波器和无迹变换滤波器中均一致。
在这里插入图片描述
则经过线性逼近的高斯逼近的 x , y \bm{x,y} x,y联合分布为:
在这里插入图片描述

EKF模型为:
在这里插入图片描述
式中, x k ∈ R n \bm{x_k \in R^n} xkRn为状态量, y k ∈ R m \bm{y_k \in R^m} ykRm为量测量, q k − 1 ∼ N ( 0 , Q k − 1 ) \bm{q_{k-1} \sim N(0, Q_{k-1})} qk1N(0,Qk1)为高斯过程噪声, r k ∼ N ( 0 , R k ) \bm{r_k \sim N(0,R_k)} rkN(0,Rk)为量测噪声, f ( ⋅ ) \bm{f(\cdot)} f()为系统的动态模型, h ( ⋅ ) \bm{h(\cdot)} h()为系统的量测模型。

一阶可叠加卡尔曼滤波的预测与更新过程如下:
在这里插入图片描述在这里插入图片描述

扩展卡尔曼滤波-过程和量测噪声不可叠加类型:

不可叠加变换通式为:
在这里插入图片描述
通过增广变换得到关于 x , y \bm{x,y} x,y的均值和协方差为:
在这里插入图片描述
非叠加变换的线性逼近为:
在这里插入图片描述
EKF模型为:
在这里插入图片描述
相关的变量和函数均与可叠加变换的一致。

一阶不可叠加卡尔曼滤波的预测和更新过程如下:
在这里插入图片描述

统计线性化滤波器

对于统计线性化滤波器,只是把一阶泰勒级数逼近换成统计线性化。变换模型一致:
x ∼ N ( m , P ) y = g ( x ) \bm {x \sim N(m, P) } \\ \bm{y = g(x)} xN(m,P)y=g(x)
在统计线性化中,可得到函数的线性近似:
g ( x ) ≃ b   + A δ x δ x = x − m \bm {g(x) \simeq b \ + A\delta x} \\ \bm{\delta x = x-m} g(x)b +Aδxδx=xm

使均方根误差最小,可得:
在这里插入图片描述
g ( x ) \bm{g(x)} g(x)的逼近中, b \bm{b} b恰好为均值,而逼近得到的协方差阵为:
在这里插入图片描述

统计线性化滤波器-噪声可叠加类型

其中,关于 x , y \bm{x,y} x,y的增广矩阵的均值和方差求法与EKF一致:
在这里插入图片描述
关于 x \bm{x} x的变换通式是一致的。
基于高斯逼近的统计线性化得到的 x , y \bm{x,y} x,y联合分布为:
在这里插入图片描述

该统计线性化滤波器的预测和更新过程如下:在这里插入图片描述

统计线性化滤波器-噪声不可叠加类型

通过增广变换得到关于 ( x , y ) \bm(x,y) (x,y)均值和协方差:
在这里插入图片描述
关于 x \bm{x} x的变换通式为不可叠加的变换通式;
基于高斯逼近的统计线性化得到的 x , y \bm{x,y} x,y的分布如下:
在这里插入图片描述
不可叠加噪声的统计线性化(卡尔曼)滤波器的预测和更新步骤如下:
在这里插入图片描述
在这里插入图片描述

无迹卡尔曼滤波

噪声可叠加的无迹卡尔曼滤波

可叠加的变换通式均一致。
基于高斯逼近的无迹变换的 x , y \bm{x,y} x,y的分布为:
在这里插入图片描述
式中,子矩阵的计算表达式:

  1. 构造 2 n + 1 \bm{2n+1} 2n+1 s i g m a \bm{sigma} sigma点:
    在这里插入图片描述
    式中, λ \bm{\lambda} λ为比例系数,且由算法系数 α ,   κ \bm{\alpha,\ \kappa} α, κ决定(这两个系数应该是在相关算法中确定):
    在这里插入图片描述
  2. s i g m a \bm{sigma} sigma点带入非线性函数 g ( ⋅ ) \bm{g(\cdot)} g()中:
    在这里插入图片描述
  3. 计算子矩阵:
    在这里插入图片描述
    其中,常值权值 W i ( m ) , W i ( c ) \bm{W^{(m)}_i,W^{(c)}_i} Wi(m),Wi(c)的定义为:
    在这里插入图片描述

噪声可叠加的无迹卡尔曼滤波预测和更新步骤:
系统的动态模型和量测模型与先前一致。
预测部分:
1). 构造 s i g m a \bm{sigma} sigma点:
在这里插入图片描述
2). 将 s i g m a \bm{sigma} sigma点带入系统动态模型中:
在这里插入图片描述
3). 计算预测均值 m k − \bm{m^-_k} mk和预测协方差 P k − \bm{P^-_k} Pk:
在这里插入图片描述

更新部分:
1). 构造 s i g m a \bm{sigma} sigma点:
在这里插入图片描述
2). 将 s i g m a \bm{sigma} sigma点带入系统量测模型中:
在这里插入图片描述
3). 计算量测量预测均值 m k − \bm{m^-_k} mk和预测协方差 P k − \bm{P^-_k} Pk,以及状态与量测量之间的互协方差 C k \bm{C_k} Ck:
在这里插入图片描述
4). 结合量测量 y k \bm{y_k} yk,计算滤波增益 K k \bm{K_k} Kk,滤波状态平均值 m k \bm{m_k} mk和方差 P k \bm{P_k} Pk
在这里插入图片描述

噪声不可叠加的无迹卡尔曼滤波

不可叠加的变换通式如EKF中的一致。
基于高斯逼近的无迹变换的 x , y \bm{x,y} x,y的分布如下:
在这里插入图片描述
式中,子矩阵的计算方法如下:
x , q \bm{x,q} x,q的维数分别为 n , n q \bm{n,n_q} n,nq,且 n ′ = n   + n q \bm{n^{'} =n\ + n_q} n=n +nq.
1). 构造增广随机变量 x ~ = ( x , q ) \bm{ \widetilde{x} = (x,q)} x =(x,q) s i g m a \bm{sigma} sigma点:
在这里插入图片描述
式中, λ ′ \bm{\lambda^{'}} λ λ \bm{\lambda} λ的定义式一致,另外,增广均值和协方差定义式为:
在这里插入图片描述
2). 将 s i g m a \bm{sigma} sigma点带入非线性方程:
在这里插入图片描述
3). 计算预测均值 μ U \bm{\mu_U} μU,预测协方差 S U \bm{S_U} SU和状态量和量测量之间的互协方差 C U \bm{C_U} CU
在这里插入图片描述

噪声不可叠加的无迹卡尔曼滤波:

预测步骤:
1). 构造增广随机变量 ( x k − 1 , q k − 1 ) \bm{ (x_{k-1},q_{k-1})} (xk1,qk1) s i g m a \bm{sigma} sigma点:
在这里插入图片描述
2). 将 s i g m a \bm{sigma} sigma点带入动态模型中:
在这里插入图片描述
3). 计算预测均值 m k − \bm{m^-_k} mk,预测协方差 P k − \bm{P^-_k} Pk
在这里插入图片描述

更新步骤:
1). 构造增广随机变量 ( x k , q k ) \bm{ (x_k,q_k)} (xk,qk) s i g m a \bm{sigma} sigma点:在这里插入图片描述
在这里插入图片描述
2). 将 s i g m a \bm{sigma} sigma点带入量测模型中:
在这里插入图片描述
3). 计算预测均值 μ k \bm{\mu_k} μk,预测协方差 S k \bm{S_k} Sk和状态量和量测量之间的互协方差 C k \bm{C_k} Ck
在这里插入图片描述
4). 结合量测量 y k \bm{y_k} yk,计算滤波增益 K k \bm{K_k} Kk,滤波状态平均值 m k \bm{m_k} mk和方差 P k \bm{P_k} Pk
在这里插入图片描述

本文参考贝叶斯滤波与平滑,作者萨日伽。太累了,不想去一一检验错误,如有疑问,请留言。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值