Transformer模型——token及模型参数

预训练模型变现影响因素

  • 模型表现强依赖于模型规模(模型参数量、训练Token数、训练总计算量);
  • 平滑幂定律:模型表现与三个因子均遵循幂定律,不受另外两个因子限制;
  • 在给定计算量预算下,模型参数量以及训练Token数应该同比提升;
    总的来说,随着适当的提高模型大小、数据和计算能力,语言建模性能会平稳、可预测地提高。更大的语言模型将比其他模型表现更好,并且更具样本效率。

预训练数据Token重复是否影响模型性能?

  • 多轮epoch的训练会降低模型性能;
  • 更大规模的数据集会缓解重复epochs对模型性能下降的影响;
  • 提高数据集的质量也无法挽救重复训练带来的过拟合;
  • 小计算量模型的过拟合趋势与大计算量的差不多;
  • 多样的训练目标不一定减轻Epoch的性能下降;
  • Dropout是一个被大预言模型忽视的正则技术,虽然慢,但是可以降低多epochs的影响;
  • 在训练过程中逐渐使用Dropout是有效的策略;

预训练数据集重复的影响是什么

  • 模型参数规模与tokens数量需要匹配;
  • 多轮epoch的训练会降低模型性能;
    数据集重复的次数越多,模型的性能越差,如果tokens数量不够,模型参数规模越大,越容易出现过拟合现象;

影响多次Epochs训练效果下降的原因是什么?

  • 更大规模的数据集会缓解重复epochs对模型性能下降的影响;
  • 提高数据集的质量也无法挽救重复训练带来的过拟合;
  • 参数数量和FLOPs在重复训练上的影响;
    模型规模的增长其实表现在两个方面,一个是模型参数,一个是模型所需要的计算量。模型参数相同的情况下,采用不同的模型架构所需啊哟的FLOPs是不同的。经测试发现,FLOPs较大的模型性能会更好一点,但是依然无法有效降低重复训练带来的模型损失。
  • 小计算量模型的过拟合趋势与大计算量的差不多;
  • 多样的训练目标可以减轻多Epoch下降;

正则化可以降低多epochs的影响吗?

  • Dropout是一个被大语言模型忽视的正则技巧,虽然慢,但是可以降低很多epochs的影响;
  • 在训练过程中逐渐使用Dropout是有效的策略;
    如果前期训练不适用Dropout,在后期的迭代中使用Dropout也是有效的;
  • Dropout对不同规模模型的影响不同;
    在不同规模模型下是不同的,对于规模较大的模型,Dropout不能有效降低多epochs带来的坏处。
  • 通过MoE扫描确定稠密模型的最佳超参数;

多epochs训练对大语言模型性能的影响

在tokens数量一定的数据集上做多epochs的模型训练,会影响模型的性能,降低模型的效果。这在预训练和下游任务都会产生影响。但是,随着模型的发展,高质量数据集的tokens数将很快用完。而采用正则技术虽然会影响模型训练效率,但是会降低这种影响。

### 使用Python和DeepSeek库操作Transformer模型 为了使用Python和DeepSeek库来操作Transformer模型,可以遵循以下指南: #### 安装依赖项 首先安装必要的软件包。假设已经配置好Python环境,可以通过pip安装所需的库。 ```bash pip install deepseek torch transformers ``` #### 加载预训练的Transformer模型 加载一个预训练好的Transformer模型通常涉及指定模型名称以及选择合适的分词器(tokenizer),这有助于准备输入给模型的数据。 ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased') ``` 此部分代码展示了如何利用Hugging Face提供的`transformers`库中的类加载BERT模型及其对应的分词工具[^1]。 #### 数据处理与转换 对于文本分类任务来说,需要先将原始文本转化为适合喂入神经网络的形式——即token IDs序列加上注意力掩码(attention mask)等辅助信息。 ```python text = "Example sentence." inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) ``` 这段脚本说明了怎样通过调用分词器对象的方法完成上述工作;其中参数设置确保了不同长度的句子能够被适当地填充或截断至固定大小以便批量计算[^3]。 #### 执行推理过程 一旦准备好输入张量之后就可以将其传递给模型实例来进行预测了。 ```python outputs = model(**inputs) logits = outputs.logits predicted_class_id = logits.argmax().item() print(f'Predicted class ID: {predicted_class_id}') ``` 这里给出了执行前向传播并获取最终输出层的结果的方式,同时也示范了简单地解析这些结果以得到类别标签索引的过程。 #### 利用DeepSeek特性增强功能 如果想要进一步提升性能或者探索更复杂的场景,则可考虑集成来自DeepSeek的独特组件和服务。具体实现细节取决于该框架所提供的API文档指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值