# 矩阵外积与内积

$a^T\cdot b = a_1b_1 + a_2b_2$

$b\otimes a^T = \begin{pmatrix} b_1a_1 & b_1a_2\\ b_2a_1 & b_2a_2 \end{pmatrix}$

$\bigl(\begin{smallmatrix} \ a_1^T\\ \ a_2^T \\ \end{smallmatrix}\bigr)$，又可以看作是由两个列向量组成的行量$\begin{pmatrix} a_1 & a_2 \end{pmatrix}$,我们$a_i$表示列向量，$a_i^T$表示行向量

$AB = \begin{pmatrix} \ a_1^T\\ \ a_2^T\\ \end{pmatrix} \begin{pmatrix} b_1& b_2 \end{pmatrix}$

$AB = \begin{pmatrix} a_1^Tb_1 &a_1^Tb2 \\ a_2^Tb_1&a_2^Tb2 \end{pmatrix}$

$AB = \begin{pmatrix} a_1 & a_2 \end{pmatrix} \begin{pmatrix} b_1 &b_2 \end{pmatrix}$

$c_1 = Ab_1 = \begin{pmatrix} a_1 & a_2 \end{pmatrix}b_1 = a_1b_{11} + a_2b_{12}$

$c_2 = a_1b_{21} + a_2b_{21}$

$AB = \begin{pmatrix} a_1^T\\ a_2^T \end{pmatrix} \begin{pmatrix} b_1^T\\ b_2^T \end{pmatrix}$

$c_1^T = a_1^T B = a_1^T\begin{pmatrix} b_1^T\\ b_2^T \end{pmatrix} = a_{11}b_1^T + a_{12}b_2^T$

$c_2^T = \begin{pmatrix} a_{21}b_1^T& a_{22}b_2^T\\ \end{pmatrix}$

$AB = \begin{pmatrix} a_1 &a_2 \end{pmatrix} \begin{pmatrix} b_1^T\\ b_2^T \end{pmatrix}$

$AB = a_1b_1^T + a_2b_2^T$

## 点乘公式

a和b的点积公式为：

## 点乘几何意义

a·b>0    方向基本相同，夹角在0°到90°之间

a·b=0    正交，相互垂直

a·b<0    方向基本相反，夹角在90°到180°之间

a和b的叉乘公式为：