LLM - 大语言模型 基于人类反馈的强化学习(RLHF)

本文介绍了RLHF(基于人类反馈的强化学习)技术,它结合强化学习和人类反馈优化大语言模型的性能。通过奖励模型、策略模型、评论模型和参考模型的协同工作,RLHF训练语言模型理解并满足人类需求。文章详细阐述了奖励模型的训练过程、近端优化策略PPO的应用以及MOSS-RLHF框架,该框架由复旦大学自然语言处理团队开发,致力于提升模型的安全性和伦理性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/137269049

RLHF

基于人类反馈的强化学习(RLHF,Reinforcement Learning from Human Feedback),结合 强化学习(RL) 和 人类反馈 来优化模型的性能。这种方法主要包括:

  1. 多种策略产生样本并收集人类反馈:使用不同的策略来生成文本样本,然后,由人类评估这些样本的质量,以收集反馈数据。
  2. 训练奖励模型:基于收集到的人类反馈,训练奖励模型(Reward Model, RM),该模型的目标是评估模型输出的文本质量。
  3. 训练强化学习策略,微调语言模型:在这一步中,将初始语言模型的微调任务建模为强化学习问题࿰
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值