LLM - 大语言模型 基于人类反馈的强化学习(RLHF)

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/137269049

RLHF

基于人类反馈的强化学习(RLHF,Reinforcement Learning from Human Feedback),结合 强化学习(RL) 和 人类反馈 来优化模型的性能。这种方法主要包括:

  1. 多种策略产生样本并收集人类反馈:使用不同的策略来生成文本样本,然后,由人类评估这些样本的质量,以收集反馈数据。
  2. 训练奖励模型:基于收集到的人类反馈,训练奖励模型(Reward Model, RM),该模型的目标是评估模型输出的文本质量。
  3. 训练强化学习策略,微调语言模型:在这一步中,将初始语言模型的微调任务建模为强化学习问题,定义策略(Policy)、动作空间(Action Space)和奖励函数(Reward Function)。然后,使用近端策略优化(Proximal Policy Optimization,PPO)等算法来更新模型的参数,优化奖励函数。

通过这种方法,模型能够学习人类的偏好,并且,生成更符合

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SpikeKing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值